scholarly journals Metal Flow Control in Producing the Non Symmetrical Parts in Deep Drawing Process

2018 ◽  
Vol 36 (6A) ◽  
Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3993
Author(s):  
Thanh Trung Do ◽  
Pham Son Minh ◽  
Nhan Le

The formability of the drawn part in the deep drawing process depends not only on the material properties, but also on the equipment used, metal flow control and tool parameters. The most common defects can be the thickening, stretching and splitting. However, the optimization of tools including the die and punch parameters leads to a reduction of the defects and improves the quality of the products. In this paper, the formability of the camera cover by aluminum alloy A1050 in the deep drawing process was examined relating to the tool geometry parameters based on numerical and experimental analyses. The results showed that the thickness was the smallest and the stress was the highest at one of the bottom corners where the biaxial stretching was the predominant mode of deformation. The problems of the thickening at the flange area, the stretching at the side wall and the splitting at the bottom corners could be prevented when the tool parameters were optimized that related to the thickness and stress. It was clear that the optimal thickness distribution of the camera cover was obtained by the design of tools with the best values—with the die edge radius 10 times, the pocket radius on the bottom of the die 5 times, and the punch nose radius 2.5 times the sheet thickness. Additionally, the quality of the camera cover was improved with a maximum thinning of 25% experimentally, and it was within the suggested maximum allowable thickness reduction of 45% for various industrial applications after optimizing the tool geometry parameters in the deep drawing process.


2013 ◽  
Vol 789 ◽  
pp. 367-372 ◽  
Author(s):  
Susila Candra ◽  
I. Made Londen Batan ◽  
Agus Sigit Pramono ◽  
Bambang Pramujati

This paper presents the importance of simulation of metal flow in deep drawing process which employs an antilock brake mechanic system. Controlling the force and friction of the blank holder is imperative to assure that the sheet metal is not locked on the blank holder, and hence it flows smoothly into the die. The simulation was developed based on the material displacement, deformation and deep drawing force on flange in the radial direction, that it is controlled by blank holder with antilock brake mechanic system. The force to blank holder was applied periodically and the magnitude of force was kept constant during simulation process. In this study, the mechanical properties of the material were choses such that they equivalent to those of low carbon steel with its thickness of 0.2 mm. The diameter and the depth of the cylindrical cup-shaped product were 40 mm and 10 mm, respectively. The simulation results showed that the application of antilock brake mechanic system improves the ability to control the material flow during the drawing process, although the maximum blank holder force of 13000 N was applied. The optimum condition was found when the drawing process was performed using blank holder force of 3500 N, deep drawing force of 7000 N, friction coefficient of 0.25 and speed of punch stroke of 0.84 mm/sec. This research demonstrated that an antilock brake mechanic system can be implemented effectively to prevent cracking in deep drawing process.


Author(s):  
Hamidreza Gharehchahi ◽  
Mohammad Javad Kazemzadeh-Parsi ◽  
Ahmad Afsari ◽  
Mehrdad Mohammadi

1993 ◽  
Vol 115 (2) ◽  
pp. 224-229 ◽  
Author(s):  
K. Yamaguchi ◽  
K. Kanayama ◽  
M. H. Parsa ◽  
N. Takakura

A new deep drawing process of sheet metals is developed to facilitate small-lot production of deep cups with large drawing ratio. In this process, unlike the conventional deep drawing method, a few drawn cups are always stacked on the punch and used as a part of punch for the subsequent deep drawing of a given blank. Before drawing a new blank, a drawn cup which is in contact with the punch is stripped off. The repetition of such stripping and drawing operations makes it possible to carry out both the first-stage drawing and the subsequent slight redrawings in one drawing operation using only one pair of punch and die. In this paper, this new deep drawing process is applied to the production of tapered cups and the main feature of the process is shown.


2014 ◽  
Vol 53 ◽  
pp. 797-808 ◽  
Author(s):  
H. Zein ◽  
M. El Sherbiny ◽  
M. Abd-Rabou ◽  
M. El shazly

Sign in / Sign up

Export Citation Format

Share Document