scholarly journals Simulation of Metal Flow to Investigate the Application of Antilock Brake Mechanic System in Deep Drawing Process of Cup

2013 ◽  
Vol 789 ◽  
pp. 367-372 ◽  
Author(s):  
Susila Candra ◽  
I. Made Londen Batan ◽  
Agus Sigit Pramono ◽  
Bambang Pramujati

This paper presents the importance of simulation of metal flow in deep drawing process which employs an antilock brake mechanic system. Controlling the force and friction of the blank holder is imperative to assure that the sheet metal is not locked on the blank holder, and hence it flows smoothly into the die. The simulation was developed based on the material displacement, deformation and deep drawing force on flange in the radial direction, that it is controlled by blank holder with antilock brake mechanic system. The force to blank holder was applied periodically and the magnitude of force was kept constant during simulation process. In this study, the mechanical properties of the material were choses such that they equivalent to those of low carbon steel with its thickness of 0.2 mm. The diameter and the depth of the cylindrical cup-shaped product were 40 mm and 10 mm, respectively. The simulation results showed that the application of antilock brake mechanic system improves the ability to control the material flow during the drawing process, although the maximum blank holder force of 13000 N was applied. The optimum condition was found when the drawing process was performed using blank holder force of 3500 N, deep drawing force of 7000 N, friction coefficient of 0.25 and speed of punch stroke of 0.84 mm/sec. This research demonstrated that an antilock brake mechanic system can be implemented effectively to prevent cracking in deep drawing process.

2020 ◽  
Vol 20 (1) ◽  
pp. 12-24
Author(s):  
Hani Aziz Ameen

In this paper, the drawability of two-layer (steel-brass) sheets to produce square cup, is investigated through numerical simulations, and experimental tests. Each material has its own benefits and drawbacks in terms of its physical, chemical and mechanical properties, so that the point of this investigation is taking the benefits of different materials, like (low density, high strength and resistibility of corrosion), at the same time and in a one part. ANSYS18 software is used to simulate the deep drawing process of laminated sheet. The deep drawing processes for square cup were carried out under various blank holder loads with different lubrication conditions (dry and lubricant) and with variable layer arrangement. The materials were low carbon steel st1008 and brass CuZn30 sheets with thickness of 0.5mm0and 0.58mm respectively. The thickness of laminated sheet blank was 1.1 mm and its diameter was 83 mm. The drawn cups with less imperfections and satisfactory thickness distribution were formed in this study. It is concluded the greatest thinning appear in the corner of the cup near the punch radius due to extreme stretching take place in this area. Experimental forming load, blank holder load, and thickness distribution are compared with simulation results. Good agreement between experimental and numerical is evident.


Author(s):  
Hossam H. Gharib ◽  
Abdalla S. Wifi ◽  
Maher Y.A. Younan ◽  
Ashraf O. Nassef

2012 ◽  
Vol 249-250 ◽  
pp. 51-58
Author(s):  
Qing Wen Qu ◽  
Tian Ke Sun ◽  
Shao Qing Wang ◽  
Hong Juan Yu ◽  
Fang Li

A simulation of deep drawing process on the sheet metal was done by using Dynaform, the influence of blank holder force, deep drawing speed and friction coefficient on the forming speed of sheet metal in the deep drawing process were got. The forming speed of sheet metal determines the quality of deep drawing, in the deep drawing process the blank holder force and the deep drawing speed are controllable parameters, the friction coefficient can be intervened and controlled, and it’s a manifestation of the interaction of all parameters, the main factors which influence the friction coefficient just have blank holder force, deep drawing speed and lubrication except the material. The conclusion of this study provides the basic data for the analysis of the lubrication of mould, the study of lubricant and the prediction of the service life of deep drawing die.


2011 ◽  
Vol 383-390 ◽  
pp. 2785-2789
Author(s):  
Naoki Horiike ◽  
Shoichiro Yoshihara ◽  
Yoshitaka Tsuji ◽  
Yusuke Okude

In the deep-drawing process, the application of low-frequency vibration to the blank material has recently been focused on with the aim of improving the friction performance between the die and the blank material. A servo-controlled press machine is suitable for applying low-frequency vibration to the blank during the deep-drawing process, because the punch speed and blank holder force (BHF) are easily controlled as process parameters by using the servo motors. In this study, a BHF with low-frequency vibration was proposed as a technique for improving deep-drawability, which is mainly affected by the friction performance and the lubricant condition. We found that the friction performance between the blank surface and the blank holder was decreased in the case of a BHF with low-frequency vibration since the lubricating oil rapidly flowed into the clearance during the forming process. Furthermore, for a BHF with low-frequency vibration, the punch force and the deformation resistance were lower than those in a deep-drawing test without low-frequency vibration.


2016 ◽  
Vol 2016.53 (0) ◽  
pp. _318-1_-_318-5_
Author(s):  
Hiroki KOYAMA ◽  
Satoshi KITAYAMA ◽  
Takuya NODA ◽  
Ken YAMAMICHI ◽  
Kiichiro KAWAMOTO

2010 ◽  
Vol 2010.20 (0) ◽  
pp. _2111-1_-_2111-5_
Author(s):  
Jirasak Srirat ◽  
Koetsu Yamazaki ◽  
Satoshi Kitayama

2014 ◽  
Vol 1036 ◽  
pp. 344-348
Author(s):  
Aurelian Albut ◽  
Vlad Andrei Ciubotariu

The current work deals with numerical simulation connected to forming of a rectangular shaped part made from tailored blanks, having the welding line positioned symmetrical with respect to the part geometry. The objective was to study the relation between the blank holder force applied during forming and the thinning of the parents materials. All the parameters are fixed except the blank holder force, its variation will cause variation of the material thinning. The presented work is trying to demonstrate the important role of the blank holder force on the material thinning during the deep drawing process. It must be mentioned that both materials from the welded structure are having the same thickness (1mm). The Dynaform 5.8.1 software is used to simulate the forming process. The part obtained after each simulation is analyzed and measured to quantify the on the material thinning. All the parameters are maintained fixed except the blank holder force. The obtained results for five different binder forces (5, 10, 30, 50, 70 kN) were compared to realise the behaviour of the tailor welded blanks during deep drawing process. In the final part of this paper conclusions regarding the influence of the blank holder force on the material thinning are presented.


Sign in / Sign up

Export Citation Format

Share Document