An Improved Method for Combine (LSB and MSB) Based on Color Image RGB

2021 ◽  
Vol 39 (1B) ◽  
pp. 231-242
Author(s):  
Sally A. Mahdi ◽  
Maisa’a A. Khodher

Image steganography is the art of hiding data into an image by using the secret key. This paper presents two techniques that combine the most significant bit (MSB) as well as the least significant bit (LSB) based on a color image (24bit for RGB). The presented study proposes a novel method to combine (LSB and MSB) bits based on check MSB values and replace bits from LSB with a secret message. The result of this proposed method that made not affect quality stego -image based on the resulting histogram that shows a match between the cover image and stego- image and more secure because not hidden in all image. The factors were used Mean Square Error (MSE), Compute Payload, in addition to Peak Signal to Noise Ratio (PSNR). The PSNR’s rate is high and MSE is less. The result of this paper when applying on the different image gives high PSNR of 87.141 and less MSE of 0.00012 when inserting message 80 bits and reduction value PSNR of 72.023 and MSE of 0.0040 when inserting message 1200 bits and measure entropy is the same value for cover image and stego –image then this method is more security for the attacker.

2021 ◽  
pp. 3220-3227
Author(s):  
Sarab M. Hameed ◽  
Zuhair Hussein Ali ◽  
Ghadah K. AL-Khafaji ◽  
Safa Ahmed

     Steganography is a technique to hide a secret message within a different multimedia carrier so that the secret message cannot be identified. The goals of steganography techniques include improvements in imperceptibility, information hiding, capacity, security, and robustness. In spite of numerous secure methodologies that have been introduced, there are ongoing attempts to develop these techniques to make them more secure and robust. This paper introduces a color image steganographic method based on a secret map, namely 3-D cat. The proposed method aims to embed data using a secure structure of chaotic steganography, ensuring better security. Rather than using the complete image for data hiding, the selection of the image band and pixel coordination is adopted, using the 3D map that produces irregular outputs for embedding a secret message randomly in the least significant bit (LSB) of the cover image. This increases the complexity encountered by the attackers. The performance of the proposed method was evaluated and the results reveal that the proposed method provides a high level of security through defeating various attacks, such as statistical attacks, with no detectable distortion in the stego-image. Comparison results ensure that the proposed method surpasses other existing steganographic methods regarding the Mean Square Error (MSE) and Peak Signal-to-Noise Ratio(PSNR).


2018 ◽  
Vol 31 (2) ◽  
pp. 193 ◽  
Author(s):  
Hussein L. Hussein

Concealing the existence of secret hidden message inside a cover object is known as steganography, which is a powerful technique. We can provide a secret communication between sender and receiver using Steganography. In this paper, the main goal is for hiding secret message into the pixels using Least Significant Bit (LSB) of blue sector of the cover image. Therefore, the objective is by mapping technique presenting a model for hiding text in an image. In the model for proposing the secret message, convert text to binary also the covering (image) is divided into its three original colors, Red, Green and Blue (RGB) , use the Blue sector convert it to binary,  hide two bits from the message in  two bits of the least significant bits of blue sector of the image.


Author(s):  
Huda Najeeb

The goal of encryption voice is to ensure the preservation of the conversation details and not to allow anyone to tamper with or see it. This conversation is either secret or very private; no one can understand the substance of that information or messages only authorized persons who have own secret key. The best method to protect the voice message from unauthorized persons is to use both cryptography and steganography. This paper reviews the Advanced Encryption Standard (AES) algorithm used for encrypting voice message and  the Least Signification Bit steganography (LSB) used for embedding encrypted voice message with related key in color image without impacting the content and quality of it. After hiding a secret voice in an image, Stego image is created then is sent to the recipient. The mean square error (MSE) and the signal-to-noise ratio (PSNR) is calculated to measure the quality of the sent image. The findings of the research are that the stego image cannot be distinguished by the naked eye from the original cover image when the bit value is 1 or 2 and thus we reach the goal to cover the presence of a hidden sound inside.


2020 ◽  
Vol 17 (12) ◽  
pp. 5279-5295
Author(s):  
S. Jahnavi ◽  
C. Nandini

With increase in growth of data and digital threat, demand of securing the data communicated over the internet is an essential play in the digital world. In the vision of digitalizing services with the next generation of security to the sensitive data transmitted over the internet by hiding the existence of the data using next generation cryptography by fusing cryptography techniques is one the major technique adopted. With this the aim in traditional Least Significant Bit (LSB) is one of the widely used technique. Where the secret message or image are placed in the cover image in the least significant bits of RGB Channels resulting in a stego image. But the drawback is, on suspecting the differences in the pixels of original and stegoimage in the secret data embedded can be guessed and extracted by attacker. The Proposed visual crypto-mask steganography method overcomes this drawback and support good payload capacity with multi modal approach of embedding biometrics, resulting in ∞ PSNR. The authenticated person face and fingerprint information is transmitted in a cover image and mask image (magic sheet) using proposed steganography and is combined with Random Visual Crypto Technique. Which results in enhanced and advance visual crypto steganography secured model in communicating sensitive (biometric features) information over the internet. Where the complete information cannot be extracted using only cover image. Mask image (magic sheet) is used along with cover image that reveals the secret data in the receiving end.


2015 ◽  
Vol 44 (3) ◽  
pp. 315-328 ◽  
Author(s):  
Khalid Darabkh ◽  
Iyad F. Jafar ◽  
Raed T. Al-Zubi ◽  
Mohammed Hawa

With the development of internet technologies and communication services, message transmissions over the internet still have to face all kinds of security problems. Hence, how to protect secret messages during transmission becomes a challenging issue for most of current researchers. It is worth mentioning that many applications in computer science and other related fields rely on steganography and watermarking techniques to ensure information safety during communication. Unlike cryptography that focuses on scrambling the secret message so that it cannot be understood, the main objective of steganography and watermarking is to communicate securely in such a way that the hidden data are not visible to the observer. In other words, it seeks for the imperceptibility of stego-images quality to an unintended party through embedding efficiently the secret message in a digital media such as image, video, or audio. In this paper, we propose a new steganographic method to embed the secret data inside a cover image based on least-significant-bit (LSB) replacement method. The embedding process predominantly concentrates on distributing the secret message inside one share of a color image to appear like a 3D geometric shape that is constructed according to well-analyzed geometric equations. The dimensions of the geometric shape are determined pursuant to the size of secret message. Data distribution process makes our method to be of a great interest as of being so difficult for the hackers or intruders to reconstruct the shape from stego-images, thereby the security is improved. Furthermore, we compare the performance of our approach with two other relevant approaches in terms of peak signal-to-noise ratio (PSNR) and payload. The contribution of our approach was immensely impressive.DOI: http://dx.doi.org/10.5755/j01.itc.44.3.8949


2014 ◽  
Vol 23 (4) ◽  
pp. 451-459 ◽  
Author(s):  
Ali M. Ahmad ◽  
Ghazali Sulong ◽  
Amjad Rehman ◽  
Mohammed Hazim Alkawaz ◽  
Tanzila Saba

AbstractThe rapid growth of covert activities via communications network brought about an increasing need to provide an efficient method for data hiding to protect secret information from malicious attacks. One of the options is to combine two approaches, namely steganography and compression. However, its performance heavily relies on three major factors, payload, imperceptibility, and robustness, which are always in trade-offs. Thus, this study aims to hide a large amount of secret message inside a grayscale host image without sacrificing its quality and robustness. To realize the goal, a new two-tier data hiding technique is proposed that integrates an improved exploiting modification direction (EMD) method and Huffman coding. First, a secret message of an arbitrary plain text of characters is compressed and transformed into streams of bits; each character is compressed into a maximum of 5 bits per stream. The stream is then divided into two parts of different sizes of 3 and 2 bits. Subsequently, each part is transformed into its decimal value, which serves as a secret code. Second, a cover image is partitioned into groups of 5 pixels based on the original EMD method. Then, an enhancement is introduced by dividing the group into two parts, namely k1 and k2, which consist of 3 and 2 pixels, respectively. Furthermore, several groups are randomly selected for embedding purposes to increase the security. Then, for each selected group, each part is embedded with its corresponding secret code by modifying one grayscale value at most to hide the code in a (2ki + 1)-ary notational system. The process is repeated until a stego-image is eventually produced. Finally, the χ2 test, which is considered one of the most severe attacks, is applied against the stego-image to evaluate the performance of the proposed method in terms of its robustness. The test revealed that the proposed method is more robust than both least significant bit embedding and the original EMD. Additionally, in terms of imperceptibility and capacity, the experimental results have also shown that the proposed method outperformed both the well-known methods, namely original EMD and optimized EMD, with a peak signal-to-noise ratio of 55.92 dB and payload of 52,428 bytes.


Author(s):  
Mohammed M. Saeed Abdullah Al-Momin ◽  
Issa Ahmed Abed ◽  
Hussein A. Leftah

This paper proposes a new algorithm for embedding private information within a cover image. Unlike all other already existing algorithms, this one tends to employ the data of the carrier image more efficiently such that the image looks less distorted. As a consequence, the private data is maintained unperceived and the sent information stays unsuspicious.  This task is achieved by dividing the least significant bit plane of the cover image into fixed size blocks, and then embedding the required top-secret message within each block using one of two opposite ways depending on the extent of similarity of each block with the private information needed to be hidden. This technique will contribute to lessen the number of bits needed to be changed in the cover image to accommodate the private data, and hence will substantially reduce the   amount of distortion in the stego-image when compared to the classic LSB image steganography algorithms.


2019 ◽  
Vol 16 (11) ◽  
pp. 4812-4825
Author(s):  
Mohsin N. Srayyih Almaliki

One of the crucial aspects of processes and methodologies in the information and communication technology era is the security of information. The security of information should be a key priority in the secret exchange of information between two parties. In order to ensure the security of information, there are some strategies which are used, and they include steganography and cryptography. With cryptography, the secret message is converted into unintelligible text, but the existence of the secret message is noticed, nonetheless, steganography involves hiding the secret message in a way that its presence cannot be noticed. In this paper, a new secure image steganography framework which is known as an adaptive stego key LSB (ASK-LSB) framework is proposed. The construction of the proposed framework was carried out in four phases with the aim of improving the data-hiding algorithm in cover images by using capacity, image quality, and security. To achieve this, the Peak Signal-to-Noise Ratio (PSNR) of the steganography framework was maintained. The four phases began with the image preparation phase, followed by the secret message preparation phase, embedding phase and finally extraction phase. The secure image steganography framework that is proposed in this study is based on a new adaptive of least significant bit substitution method, combination random function, and encryption method. In the proposed work, the secret bits are inserted directly or inversely, thereby enhancing the imperceptibility and complexity of the process of embedding. Results from the experiment reveal that the algorithm has better image quality index, peak signal-to-noise ratio, and payload used in the evaluation of the stego image.


2020 ◽  
Vol 6 (2) ◽  
pp. 111-120
Author(s):  
Yulia Fatma ◽  
Afdhil Hafid ◽  
Heru Oktavian Dani

Confidentiality in transfer the messages is an important thing to maintain. Increased security in transfer the messages can be improved using cryptography and steganography. This article aims to apply a combination of AES 128 cryptography and LSB steganography in an application, and measures the quality of the stego-image. In this article, the AES 128 algorithm is used for the encryption process of secret messages and the LSB algorithm for the process of inserting secret messages in the cover image. PSNR is used to measure the quality of the stego-image, by comparing the cover image and the stego-image. This research produces an application that can be used for the security of sending text messages by combining the AES 128 algorithm in the plaintext encryption and the LSB algorithm in the secret message insertion process. In term of measuring the quality of the stego-image, it was found that the character length of the secret message would have an impact on the MSE and PSNR values. This means, the longer the character of the secret message will affect the quality of the stego-image.


A technique to hide undisclosed information from third party as well, the method of investigation to conceal secret data into the cover frame like text, audio, image and video without any change in substantial results to the carrier image is nothing but Steganography. The contemporary safe and taut steganography of image represents an exigent form of transformation of the inserted secrecy for the receiver with getting undetected [1-5]. In Image steganography, image is the carrier and any secret message (audio or text or image) can be transmitted. This algorithm of LSB can be executed in embedding territory where the secret audio data is inserted into the LSB of envelope image for creating the stego image. This paper gives the hiding of audio data as secret data in an image file using LSB with secret key and an improved inverted LSB image Steganography with improved mean square error and peak signal to noise ratio.


Sign in / Sign up

Export Citation Format

Share Document