scholarly journals Investigation of Antiviral Drugs with Direct Effect on RNA Polymerases and Simulation of Their Binding to SARS-CoV-2 (COVID-19) RNA-Dependent RNA Polymerase by Molecular Docking Method

2020 ◽  
Vol 14 (4) ◽  
pp. 342-347
Author(s):  
Mohammad Hossein Heydargoy ◽  
Author(s):  
Alireza Jalalvand ◽  
Somayeh Behjat Khatouni ◽  
Zahra Bahri Najafi ◽  
Foroozan Fatahinia ◽  
Narges Ismailzadeh ◽  
...  

Abstract Objectives The new Coronavirus (SARS-CoV-2) created a pandemic in the world in late 2019 and early 2020. Unfortunately, despite the increasing prevalence of the disease, there is no effective drug for the treatment. A computational drug repurposing study would be an appropriate and rapid way to provide an effective drug in the treatment of the coronavirus disease of 2019 (COVID-19) pandemic. In this study, the inhibitory potential of more than 50 antiviral drugs on three important proteins of SARS-CoV-2, was investigated using the molecular docking method. Methods By literature review, three important proteins, including main protease, RNA-dependent RNA polymerase (RdRp), and spike, were selected as the drug targets. The three-dimensional (3D) structure of protease, spike, and RdRp proteins was obtained from the Protein Data Bank. Proteins were energy minimized. More than 50 antiviral drugs were considered as candidates for protein inhibition, and their 3D structure was obtained from Drug Bank. Molecular docking settings were defined using Autodock 4.2 software and the algorithm was executed. Results Based on the estimated binding energy of docking and hydrogen bond analysis and the position of drug binding, five drugs including, indinavir, lopinavir, saquinavir, nelfinavir, and remdesivir, had the highest inhibitory potential for all three proteins. Conclusions According to the results, among the mentioned drugs, saquinavir and lopinavir showed the highest inhibitory potential for all three proteins compared to the other drugs. This study suggests that saquinavir and lopinavir could be included in the laboratory phase studies as a two-drug treatment for SARS-CoV-2 inhibition.


2021 ◽  
Vol 63 (9) ◽  
pp. 14-21
Author(s):  
Thi Thu Hang Ta ◽  
◽  
Bao Kim Nguyen ◽  
Dang Huy Le ◽  
Thanh Tung Bui ◽  
...  

The COVID-19 pandemic triggering acute respiratory syndrome is a major global health concern. The SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) enzyme regulating viral replication has been evaluated as a potential therapeutic target for inhibition of the infection of SARS-CoV-2. In this study, we evaluated the ability of RNA-dependent RNA polymerase drug inhibitors by using molecular docking in silico model. Lipinski’s rule of Five was used to evaluate drug - like properties of potential compound. Pharmacokinetic parameters of potential compounds were assessed using the pkCSM tool. Based on previous publications, we have collected 100 compounds. The results exhibited that 18 compounds have RdRp inhibitory activity stronger than the remdesivir as reference compounds. The Lipinski’s rule of Five showed that 17 among 18 compounds had proprietary drug-likenesss. Compounds including novuridine, didanosine, sofosbuvir, puromycin, defibrotite, gemcitabine, and nikkomycins are the most negative energies and have pharmacokinetic good absorption, not metabolised in the liver, excreted by the kidney and may have hepatotoxicity properties. Therefore, it is necessary to conduct the in vitro and in vivo assays to developthese compounds into drugs for COVID-19 treatment


2020 ◽  
Vol 27 ◽  
Author(s):  
Sehrish Bano ◽  
Abdul Hameed ◽  
Mariya Al-Rashida ◽  
Shafia Iftikhar ◽  
Jamshed Iqbal

Background: The 2019 novel coronavirus (2019-nCoV), also known as coronavirus 2 (SARS-CoV-2) acute respiratory syndrome has recently emerged and continued to spread rapidly with high level of mortality and morbidity rates. Currently, no efficacious therapy is available to relieve coronavirus infections. As new drug design and development takes much time, there is a possibility to find an effective treatment from existing antiviral agents. Objective: In this case, there is a need to find out the relationship between possible drug targets and mechanism of action of antiviral drugs. This review discusses about the efforts to develop drug from known or new molecules. Methods: Viruses usually have two structural integrities, proteins and nucleic acids, both of which can be possible drug targets. Herein, we systemically discuss the structural-functional relationships of the spike, 3-chymotrypsin-like protease (3CLpro), papain like protease (PLpro) and RNA-dependent RNA polymerase (RdRp), as these are prominent structural features of corona virus. Certain antiviral drugs such as Remdesivir are RNA dependent RNA polymerase inhibitor. It has the ability to terminate RNA replication by inhibiting ATP. Results: It is reported that ATP is involved in synthesis of coronavirus non-structural proteins from 3CLpro and PLpro. Similarly, mechanisms of action of many other antiviral agents has been discussed in this review. It will provide new insights into the mechanism of inhibition, and let us develop new therapeutic antiviral approaches against novel SARS-CoV-2 coronavirus. Conclusion: In conclusion, this review summarizes recent progress in developing protease inhibitors for SARS-CoV-2.


Author(s):  
Debajani Tripathy ◽  
Chandana Adhikari ◽  
Mukundjee Pandey ◽  
Dipankar Bhattacharayay

Phytochemicals from Bhringaraj plant extract are traditionally used to cure Pneumonia. It is caused by Klebsiella pneumonia. Molecular docking method applied using “Biovia Discovery Studio”. “High positive values of -CDOCKER energy and -CDOCKER interaction energy” suggested that glutamic acid can effectively deactivate the dehydrogenase enzyme, thereby interrupting the life cycle of the organism.


Author(s):  
Bidyashree Tripathy ◽  
Elina Sahoo ◽  
Sidhartha Ray ◽  
Soumya Jal ◽  
Dipankar Bhattacharyay

Phytochemicals from Trigonella foenum-graecum plant extract are traditionally used to cure Tuberculosis. Molecular docking method applied using “Biovia Discovery Studio”. “High positive values of -CDOCKER energy and -CDOCKER interaction energy” suggested that this plant extract can effectively deactivate the dihydrofolate reductase enzyme thereby interrupting the life cycle of the organism.


Author(s):  
Sanjeeb Kumar Dash ◽  
Sidhartha Ray ◽  
Smruti Ranjan Behera ◽  
Soumya Jal ◽  
Dipankar Bhattacharyay

Phytochemicals from Michelia champaca L. plant extract are traditionally used to cure cough.  Cough can be caused by many reasons. Caugh can be caused by the infection of Bordetella pertussis. The objective of the study is to identify the phytochemical of Michelia champaca capable of curing cough. Molecular docking method applied using “Biovia Discovery Studio”. “High positive values of -CDOCKER energy and -CDOCKER interaction energy” suggested that magnoflorine can effectively deactivate the peptidase Do enzyme which will interrupt the life cycle of the microorganism and inhibit the multiplication.


Sign in / Sign up

Export Citation Format

Share Document