Recent Advances towards Drug Design Targeting the Protease of 2019 novel coronavirus (2019-nCoV)

2020 ◽  
Vol 27 ◽  
Author(s):  
Sehrish Bano ◽  
Abdul Hameed ◽  
Mariya Al-Rashida ◽  
Shafia Iftikhar ◽  
Jamshed Iqbal

Background: The 2019 novel coronavirus (2019-nCoV), also known as coronavirus 2 (SARS-CoV-2) acute respiratory syndrome has recently emerged and continued to spread rapidly with high level of mortality and morbidity rates. Currently, no efficacious therapy is available to relieve coronavirus infections. As new drug design and development takes much time, there is a possibility to find an effective treatment from existing antiviral agents. Objective: In this case, there is a need to find out the relationship between possible drug targets and mechanism of action of antiviral drugs. This review discusses about the efforts to develop drug from known or new molecules. Methods: Viruses usually have two structural integrities, proteins and nucleic acids, both of which can be possible drug targets. Herein, we systemically discuss the structural-functional relationships of the spike, 3-chymotrypsin-like protease (3CLpro), papain like protease (PLpro) and RNA-dependent RNA polymerase (RdRp), as these are prominent structural features of corona virus. Certain antiviral drugs such as Remdesivir are RNA dependent RNA polymerase inhibitor. It has the ability to terminate RNA replication by inhibiting ATP. Results: It is reported that ATP is involved in synthesis of coronavirus non-structural proteins from 3CLpro and PLpro. Similarly, mechanisms of action of many other antiviral agents has been discussed in this review. It will provide new insights into the mechanism of inhibition, and let us develop new therapeutic antiviral approaches against novel SARS-CoV-2 coronavirus. Conclusion: In conclusion, this review summarizes recent progress in developing protease inhibitors for SARS-CoV-2.

2020 ◽  
Vol 21 (20) ◽  
pp. 7645
Author(s):  
Katsuhito Kino ◽  
Taishu Kawada ◽  
Masayo Hirao-Suzuki ◽  
Masayuki Morikawa ◽  
Hiroshi Miyazawa

Among the natural bases, guanine is the most oxidizable base. The damage caused by oxidation of guanine, commonly referred to as oxidative guanine damage, results in the formation of several products, including 2,5-diamino-4H-imidazol-4-one (Iz), 2,2,4-triamino-5(2H)-oxazolone (Oz), guanidinoformimine (Gf), guanidinohydantoin/iminoallantoin (Gh/Ia), spiroiminodihydantoin (Sp), 5-carboxamido-5-formamido-2-iminohydantoin (2Ih), urea (Ua), 5-guanidino-4-nitroimidazole (NI), spirodi(iminohydantoin) (5-Si and 8-Si), triazine, the M+7 product, other products by peroxynitrite, alkylated guanines, and 8,5′-cyclo-2′-deoxyguanosine (cG). Herein, we summarize the present knowledge about base pairs containing the products of oxidative guanine damage and guanine. Of these products, Iz is involved in G-C transversions. Oz, Gh/Ia, and Sp form preferably Oz:G, Gh/Ia:G, and Sp:G base pairs in some cases. An involvement of Gf, 2Ih, Ua, 5-Si, 8-Si, triazine, the M+7 product, and 4-hydroxy-2,5-dioxo-imidazolidine-4-carboxylic acid (HICA) in G-C transversions requires further experiments. In addition, we describe base pairs that target the RNA-dependent RNA polymerase (RdRp) of RNA viruses and describe implications for the 2019 novel coronavirus (SARS-CoV-2): When products of oxidative guanine damage are adapted for the ribonucleoside analogs, mimics of oxidative guanine damages, which can form base pairs, may become antiviral agents for SARS-CoV-2.


2020 ◽  
Vol 9 (4) ◽  
pp. 1131 ◽  
Author(s):  
Jiansheng Huang ◽  
Wenliang Song ◽  
Hui Huang ◽  
Quancai Sun

An outbreak of novel coronavirus-related pneumonia COVID-19, that was identified in December 2019, has expanded rapidly, with cases now confirmed in more than 211 countries or areas. This constant transmission of a novel coronavirus and its ability to spread from human to human have prompted scientists to develop new approaches for treatment of COVID-19. A recent study has shown that remdesivir and chloroquine effectively inhibit the replication and infection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2, 2019-nCov) in vitro. In the United States, one case of COVID-19 was successfully treated with compassionate use of remdesivir in January of 2020. In addition, a clinically proven protease inhibitor, camostat mesylate, has been demonstrated to inhibit Calu-3 infection with SARS-CoV-2 and prevent SARS-2-spike protein (S protein)-mediated entry into primary human lung cells. Here, we systemically discuss the pharmacological therapeutics targeting RNA-dependent RNA polymerase (RdRp), proteinase and S protein for treatment of SARS-CoV-2 infection. This review should shed light on the fundamental rationale behind inhibition of SARS-CoV-2 enzymes RdRp as new therapeutic approaches for management of patients with COVID-19. In addition, we will discuss the viability and challenges in targeting RdRp and proteinase, and application of natural product quinoline and its analog chloroquine for treatment of coronavirus infection. Finally, determining the structural-functional relationships of the S protein of SARS-CoV-2 will provide new insights into inhibition of interactions between S protein and angiotensin-converting enzyme 2 (ACE2) and enable us to develop novel therapeutic approaches for novel coronavirus SARS-CoV-2.


2020 ◽  
Vol 25 (10) ◽  
pp. 1141-1151 ◽  
Author(s):  
Wei Zhu ◽  
Catherine Z. Chen ◽  
Kirill Gorshkov ◽  
Miao Xu ◽  
Donald C. Lo ◽  
...  

COVID-19 respiratory disease caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has rapidly become a global health issue since it emerged in December 2019. While great global efforts are underway to develop vaccines and to discover or repurpose therapeutic agents for this disease, as of this writing only the nucleoside drug remdesivir has been approved under Emergency Use Authorization to treat COVID-19. The RNA-dependent RNA polymerase (RdRP), a viral enzyme for viral RNA replication in host cells, is one of the most intriguing and promising drug targets for SARS-CoV-2 drug development. Because RdRP is a viral enzyme with no host cell homologs, selective SARS-CoV-2 RdRP inhibitors can be developed that have improved potency and fewer off-target effects against human host proteins and thus are safer and more effective therapeutics for treating COVID-19. This review focuses on biochemical enzyme and cell-based assays for RdRPs that could be used in high-throughput screening to discover new and repurposed drugs against SARS-CoV-2.


2020 ◽  
Vol 5 (4) ◽  
pp. 319-331
Author(s):  
K. Gopalasatheeskumar ◽  
Karthikeyen Lakshmanan ◽  
Anguraj Moulishankar ◽  
Jerad Suresh ◽  
D. Kumuthaveni Babu ◽  
...  

COVID-19 is the infectious pandemic disease caused by the novel coronavirus. The COVID-19 is spread globally in a short span of time. The Ministry of AYUSH, India which promotes Siddha and other Indian system of medicine recommends the use of formulation like Nilavembu Kudineer and Kaba Sura Kudineer Chooranam (KSKC). The present work seeks to provide the evidence for the action of 74 different constituents of the KSKC formulation acting on two critical targets. That is main protease and SARS-CoV-2 RNAdependent RNA polymerase target through molecular docking studies. The molecular docking was done by using AutoDock Tools 1.5.6 of the 74 compounds, about 50 compounds yielded docking results against COVID-19 main protease while 42 compounds yielded against SARSCoV- 2 RNA-dependent RNA polymerase. This research has concluded that the KSKC has the lead molecules that inhibits COVID-19’s target of main protease of COVID-19 and SARS-CoV-2 RNA-dependent RNA polymerase.


2014 ◽  
Vol 89 (4) ◽  
pp. 2052-2063 ◽  
Author(s):  
Amy L. Cherry ◽  
Caitriona A. Dennis ◽  
Andrew Baron ◽  
Leslie E. Eisele ◽  
Pia A. Thommes ◽  
...  

ABSTRACTThe RNA-dependent RNA polymerase (RdRp) of hepatitis C virus (HCV) is essential for viral genome replication. Crystal structures of the HCV RdRp reveal two C-terminal features, a β-loop and a C-terminal arm, suitably located for involvement in positioning components of the initiation complex. Here we show that these two elements intimately regulate template and nucleotide binding, initiation, and elongation. We constructed a series of β-loop and C-terminal arm mutants, which were used forin vitroanalysis of RdRpde novoinitiation and primer extension activities. All mutants showed a substantial decrease in initiation activities but a marked increase in primer extension activities, indicating an ability to form more stable elongation complexes with long primer-template RNAs. Structural studies of the mutants indicated that these enzyme properties might be attributed to an increased flexibility in the C-terminal features resulting in a more open polymerase cleft, which likely favors the elongation process but hampers the initiation steps. A UTP cocrystal structure of one mutant shows, in contrast to the wild-type protein, several alternate conformations of the substrate, confirming that even subtle changes in the C-terminal arm result in a more loosely organized active site and flexible binding modes of the nucleotide. We used a subgenomic replicon system to assess the effects of the same mutations on viral replication in cells. Even the subtlest mutations either severely impaired or completely abolished the ability of the replicon to replicate, further supporting the concept that the correct positioning of both the β-loop and C-terminal arm plays an essential role during initiation and in HCV replication in general.IMPORTANCEHCV RNA polymerase is a key target for the development of directly acting agents to cure HCV infections, which necessitates a thorough understanding of the functional roles of the various structural features of the RdRp. Here we show that even highly conservative changes, e.g., Tyr→Phe or Asp→Glu, in these seemingly peripheral structural features have profound effects on the initiation and elongation properties of the HCV polymerase.


2018 ◽  
Vol 63 (3) ◽  
pp. 106-114
Author(s):  
V. L. Andronova

Modern therapy of infections caused by alpha-herpesviruses is based on drugs belonging to the class of modified nucleosides (acyclovir) and their metabolic progenitors - valine ester of acyclovir and famciclovir (prodrug of penciclovir). The biological activity of these compounds is determined by the similarity of their structure to natural nucleosides: modified nucleosides compete with natural nucleosides for binding to DNA-polymerase and, due to their structural features, inhibit its activity. However, the emergence of variants of viruses resistant to the antiviral drugs available in the arsenal of modern medicine necessitates the search for new compounds able of effectively inhibiting the reproduction of viruses. These compounds should be harmless to the macroorganisms, convenient to use, and overcoming the drug resistance barrier in viruses. The search for literature in international databases (PubMed, MedLine, RINC, etc.) in order to obtain information on promising developments that open new possibilities for treating herpesvirus infection and subsequent analysis of the collected data made it possible to determine not only the main trends in the search for new antiviral agents, but also to provide information on the compounds most promising for the development of anti-herpesvirus drugs.


2020 ◽  
Vol 20 (6) ◽  
pp. 1430
Author(s):  
Muhammad Arba ◽  
Andry Nur-Hidayat ◽  
Ida Usman ◽  
Arry Yanuar ◽  
Setyanto Tri Wahyudi ◽  
...  

The novel coronavirus disease 19 (Covid-19) which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a pandemic across the world, which necessitate the need for the antiviral drug discovery. One of the potential protein targets for coronavirus treatment is RNA-dependent RNA polymerase. It is the key enzyme in the viral replication machinery, and it does not exist in human beings, therefore its targeting has been considered as a strategic approach. Here we describe the identification of potential hits from Indonesian Herbal and ZINC databases. The pharmacophore modeling was employed followed by molecular docking and dynamics simulation for 40 ns. 151 and 14480 hit molecules were retrieved from Indonesian herbal and ZINC databases, respectively. Three hits that were selected based on the structural analysis were stable during 40 ns, while binding energy prediction further implied that ZINC1529045114, ZINC169730811, and 9-Ribosyl-trans-zeatin had tighter binding affinities compared to Remdesivir. The ZINC169730811 had the strongest affinity toward RdRp compared to the other two hits including Remdesivir and its binding was corroborated by electrostatic, van der Waals, and nonpolar contribution for solvation energies. The present study offers three hits showing tighter binding to RdRp based on MM-PBSA binding energy prediction for further experimental verification.


Sign in / Sign up

Export Citation Format

Share Document