scholarly journals Mangosteen Pericarp Inhibits Nuclear Factor ?B (NF-?B) Activation and Reduces Expression of ICAM-1 in High Cholesterol Diet Rat

2013 ◽  
pp. 23-32
Author(s):  
H Hendarto ◽  
Mohammad Saifur Rohman ◽  
Djanggan Sargowo

Background: Atherosclerosis is widely viewed as an inflammatory disease with hypercholesterolemia being a dominant underlying risk factor. This study aimed to determine the effect of mangosteen pericarp in inhibition of NF-?B activation and ICAM-1 expression in rat fed with high cholesterol.Methods and Results: Various doses of crude extract mangosteen pericarp were administered to the high fat diet wistar rats and the activity of NF-?B measured by immunohistochemistry to assess nuclear NF-?B expression and the ICAM-1 expression. The high fat diet resulted significant increased serum LDL levels. Increased nuclear NF- ?B activation and ICAM-1 expression were also observed in high fat diet rats in concurrence with increased serum LDL. The inhibitory effect on NF- ?B activity and ICAM-1 expression was observed when 400 mg of mangosteen pericarp crude extract was administered and even showed a higher inhibitory effect in 800 mg of mangosteen pericap treated rats. The 800 mg extract treatment resulted in decreased ICAM-1 expression similar to those of non high fat rats.Conclusion: The administration of 800 mg mangosteen pericarp crude extract significantly inhibited NF-?B activation and reversed the expression of ICAM -1 to the normal level in high cholesterol diet rats.

2008 ◽  
Vol 295 (1) ◽  
pp. G203-G208 ◽  
Author(s):  
Astrid E. van der Velde ◽  
Carlos L. J. Vrins ◽  
Karin van den Oever ◽  
Ingar Seemann ◽  
Ronald P. J. Oude Elferink ◽  
...  

Biliary secretion is generally considered to be an obligate step in the pathway of excess cholesterol excretion from the body. We have recently shown that an alternative route exists. Direct transintestinal cholesterol efflux (TICE) contributes significantly to cholesterol removal in mice. Our aim was to investigate whether the activity of this novel pathway can be influenced by dietary factors. In addition, we studied the role of cholesterol acceptors at the luminal side of the enterocyte. Mice were fed a Western-type diet (0.25% wt/wt cholesterol; 16% wt/wt fat), a high-fat diet (no cholesterol; 24% wt/wt fat), or high-cholesterol diet (2% wt/wt), and TICE was measured by isolated intestinal perfusion. Bile salt-phospholipid mixtures served as cholesterol acceptor. Western-type and high-fat diet increased TICE by 50 and 100%, respectively. In contrast, the high-cholesterol diet did not influence TICE. Intestinal scavenger receptor class B type 1 (Sr-B1) mRNA and protein levels correlated with the rate of TICE. Unexpectedly, although confirming a role for Sr-B1, TICE was significantly increased in Sr-B1-deficient mice. Apart from the long-term effect of diets on TICE, acute effects by luminal cholesterol acceptors were also investigated. The phospholipid content of perfusate was the most important regulator of TICE; bile salt concentration or hydrophobicity of bile salts had little effect. In conclusion, TICE can be manipulated by dietary intervention. Specific dietary modifications might provide means to stimulate TICE and, thereby, to enhance total cholesterol turnover.


Chemosphere ◽  
2020 ◽  
pp. 128773
Author(s):  
Tarana Arman ◽  
Katherine D. Lynch ◽  
Michael Goedken ◽  
John D. Clarke

2009 ◽  
Vol 89 (6) ◽  
pp. 657-667 ◽  
Author(s):  
Jennifer H Yearley ◽  
Dongling Xia ◽  
Christine B Pearson ◽  
Angela Carville ◽  
Richard P Shannon ◽  
...  

2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Alex Sotolongo ◽  
Yi-Zhou Jiang ◽  
John Karanian ◽  
William Pritchard ◽  
Peter Davies

Objective: One of the first clinically detectable changes in the vasculature during atherogenesis is the accumulation of cholesterol within the vessel wall. Hypercholesterolemia is characterized by dysfunctional endothelial-dependent vessel relaxation and impaired NOS3 function. Since DNA methylation at gene promoter regions strongly suppresses gene expression, we postulated that high-fat/high-cholesterol diet suppresses endothelial NOS3 through promoter DNA methylation. Methods: Domestic male pigs were fed control diet (CD) or isocaloric high fat and high cholesterol diet (HC; 12% fat and 1.5% cholesterol) for 2, 4, 8 or 12 weeks prior to tissue collection. Furthermore, to determine the effects of risk factor withdrawal, an additional group of swine received HC for 12 weeks and then CD for 8 weeks; a control group received HC continuously for 20 weeks. Endothelial cells were harvested from common carotid aorta. In parallel in vitro studies, cultured human aortic endothelial cells (HAEC) were treated with human LDL, GW3956 (LXR agonist) and RG108 (DNA methyltransferase [DNMT] inhibitor). In cells from both sources, DNA methylation at the NOS3 promoter was measured using methylation specific pyro sequencing, and endothelial gene expression was measured using RT PCR. Results: HC diet increased plasma cholesterol level from 75 mg/dl on CD to a plateau of about 540 mg/dl within 2 weeks. Endothelial NOS3 expression was significantly reduced (71±9 % of CD) after 4 weeks of HC, a level sustained at subsequent time points. Withdrawal of HC for 8 weeks did not recover NOS3 expression. After 12-week HC, the NOS3 promoter was hypermethylated. Withdrawal of HC did not reverse NOS3 promoter methylation. In vitro treatment of HAEC with human LDL (200 mg/dl total cholesterol) or GW3956 (5μM) suppressed NOS3 mRNA to 50% and 30% respectively, suggesting that LXR/RXR is involved in suppression of NOS3. Nitric oxide production was consistently suppressed by GW3959. Both could be reversed through inhibition of DNMTs by RG108. Conclusions: DNA methylation and LXR/RXR pathway can mediate the HC-suppression of endothelial NOS3. The study identifies novel pharmaceutical targets in treating endothelial dysfunction. Crosstalk between these pathways is under investigation.


Sign in / Sign up

Export Citation Format

Share Document