scholarly journals Effect of Myocardial Fibrosis on Left Ventricular Function in Rheumatic Mitral Stenosis: A Preliminary Study with Cardiac Magnetic Resonance

2018 ◽  
Vol 38 (4) ◽  
pp. 202-206
Author(s):  
Elen Elen ◽  
Celly A. Atmadikoesoemah ◽  
Manoefris Kasim

Background: Left ventricular (LV) dysfunction was frequently found in rheumatic mitral stenosis. Myocardial fibrosis had been revealed in rheumatic heart disease and could be associated with LV dysfunction. We evaluate myocardial fibrosis profile related to LV function in rheumatic mitral stenosis with cardiac magnetic resonance (CMR). Methods: Eighteen patients with severe rheumatic mitral stenosis without history of coronary artery disease or its risk factors underwent 1.5T CMR examination. LV ejection fraction (LVEF), right ventricular ejection fraction (RVEF), myocardial fibrotic tissue were evaluated with CMR. Other hemodynamic data was derived from echocar­diography results. Results: These patients (40.4±10.5 years old, 72.2% female, 66.7% atrial fibrillation) had LVEF of 50.9±15.9% and RVEF of 37.7±13.9%. Volume of fibrotic tissue in these patients were 16.6 (5.5-55.8)%. In multivariate analysis, volume of fibrotic tissue was a significant predictor of LVEF that myocardial fibrotic tissue of 1% was associated with LVEF reduction of 0.87% (95% CI 0.51%-1.24%). Conclusion: LV function was determined by the extent of myocardial fibrosis in rheu­matic mitral stenosis.   Abstrak Latar Belakang: Disfungsi ventrikel kiri (LV) sering ditemukan pada mitral stenosis rematik. Fibrosis miokardium ditemukan pada penyakit jantung rematik. Fibrosis miokardium pada penyakit jantung rematik juga dihubungkan dengan disfungsi LV. Kami mengevaluasi profil fibrosis miokardium yang berhubungan dengan fungsi LV pada mitral stenosis rematik dengan cardiac magnetic resonance (CMR). Metode: Dilakukan pemeriksaan 1.5T CMR pada delapanbelas pasien dengan mitral stenosis rematik berat tanpa riwayat penyakit jantung koroner atau faktor resikonya. Fraksi ejeksi LV (LVEF), fraksi ejeksi RV (RVEF), dan jaringan fibrotik miokardium dievaluasi menggunakan CMR. Data hemodinamik lainnya didapatkan dari pemeriksaan ekokardiografi. Hasil: Pasien tersebut (40.4±10.5 tahun, 72.2% perempuan, 66.7% fibrilasi atrium) memiliki LVEF 50.9±15.9% dan RVEF 37.7±13.9%. Vol­ume jaringan fibrotic pada pasien tersebut adalah 16.6 (5.5-55.8)%. Dalam analisis multivariat, volume jaringan fibrotic adalah prediktor LVEF yang signifikan yaitu 1% jaringan fibrotic miokardium dihubungkan dengan menurunan LVEF sebesar 0.87% (95% CI 0.51%-1.24%). Kesimpulan: Fungsi LV dipengaruhi seberapa besar fibrosis miokardium pada mitral stenosis rematik

Author(s):  
Henk Everaars ◽  
Stefan P. Schumacher ◽  
Wijnand J. Stuijfzand ◽  
Martijn van Basten Batenburg ◽  
Jennifer Huynh ◽  
...  

AbstractTo evaluate the effect of percutaneous coronary intervention (PCI) of coronary chronic total occlusions (CTOs) on left ventricular (LV) strain assessed using cardiac magnetic resonance (CMR) tissue tracking. In 150 patients with a CTO, longitudinal (LS), radial (RS) and circumferential shortening (CS) were determined using CMR tissue tracking before and 3 months after successful PCI. In patients with impaired LV strain at baseline, global LS (10.9 ± 2.4% vs 11.6 ± 2.8%; P = 0.006), CS (11.3 ± 2.9% vs 12.0 ± 3.5%; P = 0.002) and RS (15.8 ± 4.9% vs 17.4 ± 6.6%; P = 0.001) improved after revascularization of the CTO, albeit to a small, clinically irrelevant, extent. Strain improvement was inversely related to the extent of scar, even after correcting for baseline strain (B =  − 0.05; P = 0.008 for GLS, B =  − 0.06; P = 0.016 for GCS, B =  − 0.13; P = 0.017 for GRS). In the vascular territory of the CTO, dysfunctional segments showed minor improvement in both CS (10.8 [6.9 to 13.3] % vs 11.9 [8.1 to 15.0] %; P < 0.001) and RS (14.2 [8.4 to 18.7] % vs 16.0 [9.9 to 21.8] %; P < 0.001) after PCI. Percutaneous revascularization of CTOs does not lead to a clinically relevant improvement of LV function, even in the subgroup of patients and segments most likely to benefit from revascularization (i.e. LV dysfunction at baseline and no or limited myocardial scar).


Author(s):  
Saira Siddiqui ◽  
Tarek Alsaied ◽  
Sarah E. Henson ◽  
Janvi Gandhi ◽  
Priyal Patel ◽  
...  

Background: Early detection of left ventricular (LV) dysfunction before the onset of overt Duchenne muscular dystrophy–associated cardiomyopathy (DMDAC) may direct clinical management to slow onset of dysfunction. We aimed to assess whether LV strain will predict those who develop DMDAC. Methods: We performed a single center retrospective case control study of patients with Duchenne muscular dystrophy who underwent serial cardiac magnetic resonance between 2006 and 2019. Patients with Duchenne muscular dystrophy with an LV ejection fraction ≥55% on ≥1 cardiac magnetic resonance were identified and grouped into age-matched +DMDAC and –DMDAC. Within 3 years, +DMDAC had a subsequent cardiac magnetic resonance with a decline in LV ejection fraction ≥10% and absolute LV ejection fraction ≤50%. −DMDAC maintained an LV ejection fraction ≥55% on serial cardiac magnetic resonances. Two-dimensional and 3-dimensional global radial strain, global circumferential strain (GCS), and global longitudinal strain were measured using tissue tracking software and their ability to predict DMDAC onset was assessed. Multivariable analysis adjusted for late gadolinium enhancement. Results: Thirty +DMDAC and 30 age-matched −DMDAC patients were included with a total of 164 studies analyzed. Before DMDAC onset, 2-dimensional global radial strain and GCS were significantly worse in +DMDAC compared with −DMDAC (25.1±6.0 versus 29.0±6.3, P =0.011; −15.4%±2.4 versus −17.3%±2.6, P =0.003). Three-dimensional GCS and global radial strain had similar findings. Among strain measures, 3-dimensional GCS had the highest area under the curve to predict DMDAC in our cohort. These findings persisted after adjusting for the presence of late gadolinium enhancement. Conclusions: Reduced global radial strain and GCS may predict those at risk for developing DMDAC before onset of LV dysfunction and its clinical utility warrants further exploration.


2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
IS Visoiu ◽  
RC Rimbas ◽  
LS Magda ◽  
S Mihaila-Baldea ◽  
P Balanescu ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): PN-III-P1-1-TE-2016-0669, within PNCDI III Background Left ventricular non-compaction (LVNC) is associated with an increased risk of heart failure (HF). The presence of a real LVNC with HF with preserved ejection fraction (HFpEF), is still controverted. Methods We evaluated prospectively 42 patients with HFpEF, 21 with LVNC (61 ± 9 years) and 21 without LVNC (LVC), aged and risk factor matched, by cardiac magnetic resonance (CMR) 1.5T. LVNC diagnosis was confirmed by Petersen and Jacquier criteria (NC/C ratio and the percentage of NC myocardium). We performed myocardial T1 mapping (normal value of 950 ± 21ms). We calculated a mean value of all native T1 (T1mean), and also for apical (apicalT1) and basal segments (basalT1). We also calculated ECV mean, basal and apical. All patients had NTproBNP and biomarkers for systemic inflammation (hsCRP, IL6, cystatin C and sST2), endothelial dysfunction: VCAM, von Willebrand factor (vWf), vWF metalloproteinase-ADAMTS13, and myocardial fibrosis: vascular peroxidase (VPO), and Galectin-3. Results In the LVNC, mean NC/C ratio was 2.9 ± 0.5 mm and the percentage of NC myocardium was 24.41 ± 8.8%. LVNC patients had significantly higher T1apical, higher ECVmean, ECV basal and apical (Table) by comparison with LVC group, suggesting an extensive fibrosis in LVNC group with significantly higher apical fibrosis.  Inflammatory markers were similar between groups, LVNC patients had lower values of ADAMTS13, suggesting endothelial dysfunction, and higher values of Galectin-3, suggesting increased myocardial fibrosis (Table). Galectin-3 correlated positively only with apicalT1 (R = 0.49, p = 0.04). NTproBNP significantly correlated with VPO, a promotor of fibrosis (r = 0.61, p = 0.009) in LVNC group, whereas in LVC group correlated with cystatin C (r = 0.62, p = 0003) and VCAM (r = 0.4, p = 0.05). Native apical T1 cut off &gt;1021 ms provided the highest sensibility and specificity to differentiate segments with and without NC in HFpEF (p = 0.002) (Figure). Conclusion  HFpEF patients with LVNC have significant higher NTproBNP, higher fibrosis than patients without LVNC, more extensive in non-compacted apical segments. Galectin-3 level correlates only with apical fibrosis on CMR, expressed by apicalT1 time. Moreover, endothelial dysfunction seems to play an important role in HFpEF generation in LVNC. All findings suggests that LVNC is a stand alone condition, not an adaptive hyper-trabeculation in HFpEF. Table.Comparison between groups NTproBNP (pg/ml) Galectin3 (ng/ml) ADAMTS13 (ng/ml) T1mean (ms) basalT1 (ms) apicalT1 (ms) ECV mean (%) ECV basal (%) ECV apical (%) LVNC 294 ± 282 8.44 ± 3.45 767.35 ± 335.56 1013.8 ± 31.8 1002.8 ± 27.2 1059 ± 73 27.2 ± 2.9 26.2 ± 2.9 29.6 ± 3.9 LVC 163 ± 71 6.67 ± 2.88 962.33 ± 253.78 1003.2 ± 28.1 1004.3 ± 29.5 1007 ± 40 24.3 ± 2.5 24.2 ± 2.7 25.2 ± 2.8 P value 0.031 0.048 0.049 0.26 0.865 0.007 0.002 0.033 &lt;0.001 Abstract Figure


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jin Wang ◽  
Ke Shi ◽  
Hua-yan Xu ◽  
Qin Zhao ◽  
Xi Liu ◽  
...  

AbstractThe aim of this study was to assess left ventricular (LV) myocardial strain in patients with connective tissue disease (CTD) and compare LV deformation between subgroups of idiopathic inflammatory myopathy (IIM) and non-IIM. Ninety-eight patients with CTD, comprising 56 with IIM and 42 with non-IIM, and 30 healthy subjects were enrolled and underwent 3.0T cardiac magnetic resonance imaging (MRI) scanning. The LV function and strain parameters were measured and assessed. Our result revealed that CTD patients had preserved LV ejection fraction (60.85%) and had significantly decreased global and regional peak strain (PS) in radial, circumferential, and longitudinal directions (all p < 0.05). IIM patients showed significantly reduced global longitudinal PS (GLPS) and longitudinal PS at apical slice, whereas all strain parameters decreased in non-IIM patients. Except GLPS and longitudinal PS at apical slice, all strain parameters in non-IIM patients were lower than those in IIM patients. By Pearson’s correlation analysis, the LV global radial and circumferential PS were correlated to N-terminal pro-brain natriuretic peptide level and LV ejection fraction in both IIM and non-IIM patients. This study indicated that CTD patients showed abnormal LV deformation despite with preserved LVEF. The impairment of LV deformation differed between IIM and non-IIM patients.


2021 ◽  
Vol 8 ◽  
Author(s):  
Amir Anwar Samaan ◽  
Karim Said ◽  
Wafaa El Aroussy ◽  
Mohammed Hassan ◽  
Soha Romeih ◽  
...  

Background: Rheumatic heart disease affects primarily cardiac valves, it could involve the myocardium either primarily or secondary to heart valve affection. The influence of balloon mitral valvuloplasty (BMV) on left ventricular function has not been sufficiently studied.Aim: To determine the influence of balloon mitral valvuloplasty (BMV) on both global and regional left ventricular (LV) function.Methods: Thirty patients with isolated rheumatic mitral stenosis (MS) were studied. All patients had cardiac magnetic resonance imaging (CMR) before, 6 months and 1 year after successful BMV. LV volumes, ejection fraction (EF), regional and global LV deformation, and LV late gadolinium enhancement were evaluated.Results: At baseline, patients had median EF of 57 (range: 45–69) %, LVEDVI of 74 (44–111) ml/m2 and LVESVI of 31 (14–57) ml/m2 with absence of late gadolinium enhancement in all myocardial segments. Six months following BMV, there was a significant increase in LV peak systolic global longitudinal strain (GLS) (−16.4 vs. −13.8, p &lt; 0.001) and global circumferential strain (GCS) (−17.8 vs. −15.6, p = 0.002). At 1 year, there was a trend towards decrease in LVESVI (29 ml/m2, p = 0.079) with a significant increase in LV EF (62%, p &lt; 0.001). A further significant increase, compared to 6 months follow up studies, was noticed in GLS (−17.9 vs. −16.4, p = 0.008) and GCS (−19.4 vs. −17.8 p = 0.03).Conclusions: Successful BMV is associated with improvement in global and regional LV systolic strain which continues for up to 1 year after the procedure.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Holzknecht ◽  
M Reindl ◽  
C Tiller ◽  
I Lechner ◽  
T Hornung ◽  
...  

Abstract Background Left ventricular ejection fraction (LVEF) is the parameter of choice for left ventricular (LV) function assessment and risk stratification of patients with ST-elevation myocardial infarction (STEMI); however, its prognostic value is limited. Other measures of LV function such as global longitudinal strain (GLS) and mitral annular plane systolic excursion (MAPSE) might provide additional prognostic information post-STEMI. However, comprehensive investigations comparing these parameters in terms of prediction of hard clinical events following STEMI are lacking so far. Purpose We aimed to investigate the comparative prognostic value of LVEF, MAPSE and GLS by cardiac magnetic resonance (CMR) imaging in the acute stage post-STEMI for the occurrence of major adverse cardiac events (MACE). Methods This observational study included 407 consecutive acute STEMI patients treated with primary percutaneous coronary intervention (PCI). Comprehensive CMR investigations were performed 3 [interquartile range (IQR): 2–4] days after PCI to determine LVEF, GLS and MAPSE as well as myocardial infarct characteristics. Primary endpoint was the occurrence of MACE defined as composite of death, re-infarction and congestive heart failure. Results During a follow-up of 21 [IQR: 12–50] months, 40 (10%) patients experienced MACE. LVEF (p=0.005), MAPSE (p=0.001) and GLS (p&lt;0.001) were significantly related to MACE. GLS showed the highest prognostic value with an area under the curve (AUC) of 0.71 (95% CI 0.63–0.79; p&lt;0.001) compared to MAPSE (AUC: 0.67, 95% CI 0.58–0.75; p=0.001) and LVEF (AUC: 0.64, 95% CI 0.54–0.73; p=0.005). After multivariable analysis, GLS emerged as sole independent predictor of MACE (HR: 1.22, 95% CI 1.11–1.35; p&lt;0.001). Of note, GLS remained associated with MACE (p&lt;0.001) even after adjustment for infarct size and microvascular obstruction. Conclusion CMR-derived GLS emerged as strong and independent predictor of MACE after acute STEMI with additive prognostic validity to LVEF and parameters of myocardial damage. Funding Acknowledgement Type of funding source: None


Author(s):  
Zsofia Dohy ◽  
Liliana Szabo ◽  
Attila Toth ◽  
Csilla Czimbalmos ◽  
Rebeka Horvath ◽  
...  

AbstractThe prognosis of patients with hypertrophic cardiomyopathy (HCM) varies greatly. Cardiac magnetic resonance (CMR) is the gold standard method for assessing left ventricular (LV) mass and volumes. Myocardial fibrosis can be noninvasively detected using CMR. Moreover, feature-tracking (FT) strain analysis provides information about LV deformation. We aimed to investigate the prognostic significance of standard CMR parameters, myocardial fibrosis, and LV strain parameters in HCM patients. We investigated 187 HCM patients who underwent CMR with late gadolinium enhancement and were followed up. LV mass (LVM) was evaluated with the exclusion and inclusion of the trabeculae and papillary muscles (TPM). Global LV strain parameters and mechanical dispersion (MD) were calculated. Myocardial fibrosis was quantified. The combined endpoint of our study was all-cause mortality, heart transplantation, malignant ventricular arrhythmias and appropriate implantable cardioverter defibrillator (ICD) therapy. The arrhythmia endpoint was malignant ventricular arrhythmias and appropriate ICD therapy. The LVM index (LVMi) was an independent CMR predictor of the combined endpoint independent of the quantification method (p < 0.01). The univariate predictors of the combined endpoint were LVMi, global longitudinal (GLS) and radial strain and longitudinal MD (MDL). The univariate predictors of arrhythmia events included LVMi and myocardial fibrosis. More pronounced LV hypertrophy was associated with impaired GLS and increased MDL. More extensive myocardial fibrosis correlated with impaired GLS (p < 0.001). LVMi was an independent CMR predictor of major events, and myocardial fibrosis predicted arrhythmia events in HCM patients. FT strain analysis provided additional information for risk stratification in HCM patients.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Pedro V Staziaki ◽  
Hoshang Farhad ◽  
Otávio Coelho-Filho ◽  
Ravi V Shah ◽  
Richard N Mitchell ◽  
...  

Introduction: Anthracyclines are a standard chemotherapeutic agent. However, the anthracyclines are associated with a late reduction in left ventricular ejection fraction (LVEF) and heart failure. Pathologically, anthracycline-induced cardiotoxicity (AIC) is characterized by the development of cardiac edema and fibrosis and cardiac magnetic resonance (CMR) is the gold-standard imaging technique for edema and fibrosis. Hypothesis: We hypothesized that a) cardiac edema and fibrosis would be detected by CMR after anthracyclines and b) edema and fibrosis would provide prognostic information. Methods: We performed a longitudinal CMR and histological study of 45 wild-type mice randomized to doxorubicin (DOX, n=30, 5 mg/kg/week for 5 weeks) or placebo (n=15). Measurements were performed at baseline, 5, 10, and 20 weeks after DOX or placebo. Measures of interest were LVEF, myocardial edema and fibrosis. Edema was assessed by T2 mapping, fibrosis by calculating the extracellular volume (ECV) from pre- and post-contrast T1 measurements. Results: In DOX-treated mice vs. placebo, myocardial edema at 5 weeks was increased (T2 values of 32±4 vs. 21±3 ms, P<0.05, Fig. A), while LVEF was unchanged. At 10 weeks, there was a reduction in LVEF (54±6 vs. 63±5% μL, P<0.05) and an increase in myocardial fibrosis (ECV of 0.34±0.03 vs. 0.27±0.03, P<0.05, Fig. B). There was a correlation between T2 measures and cardiac water weight (r=0.79, P=0.007, Fig. C) and between the ECV and histological myocardial fibrosis (r=0.90, P<0.001; Fig. D). Both the early increase in edema and the sub-acute increase in fibrosis predicted the late DOX-induced mortality (P<0.001, Fig. E and F). Conclusions: Our data suggest that, in mice, CMR can detect the early increase in edema and sub-acute increase in fibrosis after anthracyclines, that an increase in edema precedes a reduction in LVEF, that the increase in edema and fibrosis are linked and both are predictive of late animal mortality.


Sign in / Sign up

Export Citation Format

Share Document