scholarly journals PENGARUH PENAMBAHAN ABU CANGKANG KEMIRI TERHADAP KUAT TEKAN BETON K-300

2020 ◽  
Vol 3 (1) ◽  
pp. 12
Author(s):  
Moh. Abdul Basit Minanulloh ◽  
Yosef Cahyo ◽  
Ahmad Ridwan

K-300 concrete is concrete that has a characteristic compressive strength of 300 kg/cm2.  Many studies that use plantation and mining waste materials are simply wasted. These wastes are in the form of kemiri shell ash, rice husk ash, and others. in this study, kemiri shell ash as a cement additive, with variations in the addition of 5%, 10%, and 15% of the weight of cement to the quality of K-300 concrete. Concrete compressive tests carried out at the age of 7 and 28 days. The purpose of this study was to determine the compressive strength of concrete, the highest pressure strength, and the optimum percentage. Strong concrete pressure characteristics obtained at 28 days at a normal concrete variation 304.127 kg / cm, normal concrete variations with the addition of 5% “Abu Cangkang kemiri” 421,551 kg / cm, normal concrete variations with the addition of 10% “Abu Cangkang kemiri” 426,863 kg / cm2, and variations  normal concrete with the addition of 15% “Abu Cangkang kemiri” 428,210 kg / cm.  The results show that the optimum percentage of the addition of kemiri shell ash is 15% of the weight of cement with a maximum compressive strength of 428,210 kg/cm.  Beton K-300 adalah beton yang mempunyai kuat tekan karakteristik sebesar 300 kg/cm². Banyak penelitian yang menggunakan bahan – bahan limbah perkebunan dan tambang yang terbuang begitu saja. Limbah tersebut berupa abu cangkang kemiri, abu sekam Padi, dan lain- lain. Pada penelitian ini menggunakan abu cangkang Kemiri sebagai bahan tambah semen, dengan variasi penambahan 5%, 10%, dan 15%  dari berat semen terhadap mutu beton K-300. Uji tekan beton dilaksanakan pada umur 7 dan 28 hari. Tujuan penelitian ini adalah untuk mengetahui kuat tekan beton dan  kuat tekan tertinggi. Kuat tekan karakteristik yang diperoleh pada umur 28 hari pada variasi beton normal 304,127 kg/cm², variasi beton normal dengan penambahan 5% abu cangkang  Kemiri 421,551 kg/cm², variasi beton normal dengan penambahan10% abu cangkang Kemiri 426,863kg/cm², dan variasi beton normal dengan penambahan 15% abu cangkang Kemiri 428,210 kg/cm². Hasil penelitian menunjukkan bahwa presentase optimum dari penambahan abu cangang Kemiri  adalah sebesar15% dari berat semen dengan kuat tekan maksimum sebesar 428,210 kg/cm².

Author(s):  
Rasheed Abdulwahab ◽  
◽  
Samson Olalekan Odeyemi ◽  
Habeeb Temitope Alao ◽  
Toyyib Adeyinka Salaudeen ◽  
...  

Author(s):  
K. O. Oriola

The evaluation of agro-industrial by-products as alternative construction materials is becoming more significant as the demand for environmentally friendly construction materials increases. In this study, the workability and compressive strength of concrete produced by combining Palm Kernel Shell (PKS) and Rice Husk Ash (RHA) was investigated. Concrete mixes using a fixed content of 15% RHA as replacement for cement and 20, 40, 60, 80 and 100% PKS as replacement for crushed granite by volume with the mix ratios of 1:1½:3, 1:2:4 and 1:3:6 were produced. The water-to-cement ratios of 0.5, 0.6 and 0.7 were used for the respective mix ratios. Concrete without PKS and RHA served as control mix. The fresh concrete workability was evaluated through slump test. The concrete hardened properties determined were the density and compressive strength. The results indicated that the workability and density of PKSC were lower than control concrete, and they decreased as the PKS content in each mix ratio was increased. The compressive strength of concrete at 90 days decreased from 27.8-13.1 N/mm2, 23.8-8.9 N/mm2and 20.6-7.6 for 1:1½:3, 1:2:4 and 1:3:6, respectively as the substitution level of PKS increased from 0-100%. However, the compressive strength of concrete increased with curing age and the gain in strength of concrete containing RHA and PKSC were higher than the control at the later age. The concrete containing 15% RHA with up to 40% PKS for 1:1½:3 and 20% PKS for 1:2:4 mix ratios satisfied the minimum strength requirements for structural lightweight aggregate concrete (SLWAC) stipulated by the relevant standards. It can be concluded that the addition of 15% RHA is effective in improving the strength properties of PKSC for eco-friendly SLWAC production..


Author(s):  
Mohamed Nabil ◽  
Ashraf Essa ◽  
Magdy Mahmoud ◽  
Mohamed Rabah

The increasing demand and consumption of cement have necessitated the use of slag, fly ash, rice husk ash (RHA), and so forth as a supplement of cement in concrete construction. The aim of the study is to develop a replacement of the cement with rice husk ash and slag combined with chemical activator. NaOH, Ca(OH)2, and KOH were used in varying weights and molar concentrations. Partial replacement of cement was tested for its consistency, setting time, flow, compressive strength, and fire. The consistency and setting time of the Partial Z-Cement (Zero cement) paste increase with increasing RHA content. The replacement of cement mortar achieves a compressive strength of 22–25MPa at  28 days with 5% NaOH or at 2.5or non used activator molar concentrations. The tested slabs were made of concrete and reinforced with bars with 10 mm diameter having and compressive strength evaluated from the compressive tests. The analysis of the slab deflection behavior has been presented after fire of samples. The results show the different character of the load-deflection relationship of a replacement of the cement with rice husk ash and slag reinforced slabs compared to traditionally reinforced slabs.  


2021 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Agung Prayogi

Abstract Concrete is the most widely used material throughout the world and innovations continue to be carried out to produce efficient development. Shell charcoal ash and rice husk ash are industrial by-products which have the potential to replace sand for concrete mix, especially in Indragiri Hilir. The research with the title "Effect of Mixture of Rice Husk Ash and Shell Ash Ashes as Substitute for Some Fine Aggregates Against Concrete Compressive Strength" aims to prove the effect of a mixture of shell charcoal ash and husk ash to replace some of the sand to produce maximum compressive strength. Concrete is a mixture of Portland cement, fine aggregate, coarse aggregate, and water. This research uses 5 variations of the mixture to the weight of sand, BSA 0 without a substitute mixture, BSA 1 with a mixture of 5% husk ash and 10% shell charcoal, BSA 2 with a mixture of 5% husk ash and 15% charcoal ash, BSA 3 with a mixture of 5% husk ash and 18% charcoal, BSA 4 with a mixture of 10% husk and 10% charcoal, and BSA 5 with a mixture of 13% husk ash and 10% charcoal ash. SNI method is used for the Job Mix Formula (JMF) mixture in this research. The results of the average compressive strength of concrete at 28 days for JMF of 21.05 MPa, BSA 1 of 23.68 MPa, BSA 2 of 22.23 MPa, BSA 3 of 14.39 MPa, BSA 4 of 13.34 MPa , and BSA 5 of 20.14 MPa. The conclusion drawn from the results of the BSA 1 research with a mixture of 5% husk ash and 15% charcoal ash produced the highest average compressive strength of 23.68 MPa. Abstrak Beton merupakan material paling banyak digunakan diseluruh dunia dan terus dilakukan inovasi untuk menghasilkan pembangunan yang efisien. Abu arang tempurung dan abu sekam padi merupakan hasil sampingan industri yang berpotensi sebagai pengganti pasir untuk campuran beton, khususnya di Indragiri Hilir. Penelitian dengan judul “Pengaruh Campuran Abu Sekam Padi dan Abu Arang Tempurung Sebagai Pengganti Sebagian Agregat Halus Terhadap Kuat Tekan Beton” ini bertujuan membuktikan adanya pengaruh campuran abu arang tempurung dan abu sekam untuk mengganti sebagian pasir hingga menghasilkan kuat tekan maksimum. Beton adalah campuran antara semen portland, agregat halus, agregat kasar, dan air. Penelitian ini menggunakan 5 variasi campuran terhadap berat pasir, BSA 0 tanpa campuran pengganti, BSA 1 dengan campuran 5 % abu sekam dan 10% arang tempurung, BSA 2 dengan campuran 5% abu sekam dan 15% abu arang, BSA 3 dengan campuran 5% abu sekam dan 18% arang, BSA 4 dengan campuran 10% sekam dan 10% arang, dan BSA 5 dengan campuran 13% abu sekam dan 10% abu arang. Metode SNI digunakan untuk campuran Job Mix Formula (JMF)  pada penelitian ini. Hasil rata-rata kuat tekan beton pada umur 28 hari untuk JMF sebesar 21,05 MPa, BSA 1 sebesar 23,68 MPa, BSA 2 sebesar 22,23 MPa, BSA 3 sebesar 14,39 MPa, BSA 4 sebesar 13,34 MPa, dan BSA 5 Sebesar 20,14 MPa. Ditarik kesimpulan dari hasil penelitian BSA 1 dengan campuran 5% abu sekam dan 15% abu arang menghasilkan rata-rata kuat tekan tertinggi yaitu sebesar 23,68 MPa.  


2021 ◽  
Vol 11 (2) ◽  
pp. 127-136
Author(s):  
Sadaf Noshin ◽  
M. Adil Khan ◽  
M. Salman ◽  
M. Shahzad Aslam ◽  
Haseeb Ahmad ◽  
...  

Abstract In construction industry, demolished construction waste is recently used as reprocessed aggregate to produce environmentally friendly concrete which is a good substitute to normal crush due to increased demand of ecological growth and conservation benefits. Though, the properties of recycled aggregate concrete are smallest as compared to concrete produced from natural aggregate and these properties can be enhanced by adding some materials having cementitious properties. Rice husk ash (RHA) is used as partial replacement of cement in recycled aggregate concrete to improve the properties as well as to conserve the natural resources. The elementary purpose of this investigation is to determine the compressive strength of concrete by the replacement of cement with different percentages of rice husk ash such as 0%, 7.5%, 10%, 12.5%, 15%, and 17.5% respectively with different curing conditions. For the experimental program approximate 198 cylinders (18 for rapid curing, 90 for normal water curing and 90 for acid curing) are casted with the mix proportion of 1:2:4 and water to cement ratio of 0.50 whereas curing is done at the ages of 3,7,14,21 and 28 days. Various experiments are performed on fresh and hardened concrete to determine the effects of rice husk ash on recycled aggregate concrete with different curing conditions. Linear regression analysis is carried out to determine the compressive strength of concrete. It is pragmatic from the slump test results that the workability of recycled aggregate concrete is decreased by increasing the quantity of rice husk ash. This reduction in slump is due to high water absorption of recycled aggregates and rice husk ash. Further, the compressive strength of recycled aggregate concrete with normal and acid curing is decreased by increasing the percentages of rice husk ash. It is also observed that at 28- days of normal water curing for mix M1,M2,M3,M4,M5 and M6 the compressive strength is increased by 0.96%, 2.74% 1.45%,4.50%,4.23% and 4.22% respectively as compared to the compressive strength values at 28 days of acid water curing. Therefore, it is concluded that recycled aggregate concrete with 10 to 12% of rice husk ash is suitable for properties of concrete. The acid water curing has negative impacts on hardened properties of concrete as it reduced the compressive strength of concrete as compared to normal water curing.


Author(s):  
Joseph A. Ige ◽  
Mukaila A. Anifowose ◽  
Samson O. Odeyemi ◽  
Suleiman A. Adebara ◽  
Mufutau O. Oyeleke

This research assessed the effect of Nigerian rice husk ash (RHA) and calcium chloride (CaCl2) as partial replacement of cement in concrete grade 20. Rice husk ash (RHA) is obtained by combustion of rice husk in a controlled temperature. The replacement of OPC with rice husk ash (RHA) were 0%, 5%, 10%, 15% and 20%. 1% of Calcium Chloride was blended with OPC/RHA in all the test specimens except from control mix. Concrete cubes of sizes 150mm x 150mm x 150mm were cast and cured in water for 7, 14 and 28 days respectively. Slump test was conducted on fresh concrete while density test and compressive strength test were conducted on hardened concrete. The slump results revealed that the concrete becomes less workable (stiff) as percentage increases. The compressive strength result at 28 days revealed that 5%RHA/1%CaCl2 have the highest strength of 26.82N/mm2 while 20%RHA/1%CaCl2 have the lowest strength (21.48N/mm2). Integration of 5%RHA/1%CaCl2 and 10%RHA/1%CaCl2 as cement replacement will produce a concrete of higher compressive strength compared to conventional concrete in grade 20 concrete.


Author(s):  
Sudirman Kimi ◽  
Abdullah Abuzar Alghafari

In the development of concrete technology (Concrete Technology) today which is increasingly unceasingly, along with the development of the era hence the quality of concrete selection as the main raw material of building construction is very important. This research writer take silica fume and glenium sky as added concrete mixture to know the influence of the addition of silica fume and glenium sky to the compressive strength of concrete. The research is divided into three stages : material testing, test object making and test object. This research uses cube-shaped specimen with size 15x15x15 cm, with 5 variations, they are normal concrete, silica fume 5%, silica fume 5% + glenium sky 2%, silica fume 5% + glenium sky 4%, and silica fume 5% + glenium sky 6%, which every variations has 3 test specimens with 3 days, 7 days, and 28 days. From laboratorium testing, the characteristics of compressive strength of concrete at age 28 days of normal concrete is 407,2 Kg/Cm2, normal concrete with silica fume 5% is 418,5 Kg/Cm2, normal concrete with silica fume 5% + glenium sky 2% is 435,9 Kg/Cm2, normal concrete with silica fume 5% + glenium sky 4% is 451,9 Kg/Cm2, normal concrete with silica fume 5% + glenium sky 6% is 484,1 Kg/Cm2.


Sign in / Sign up

Export Citation Format

Share Document