Review: ODT’s drug containing Spironolactone

Author(s):  
Shalini Sharma ◽  
Ujjwal Nautiyal

Orally disintegrating tablets (ODTs) have emerged as one of the popular and widely accepted dosage forms, especially for the pediatric and geriatric patients. To obviate the problem of dysphagia and to improve patient compliance, ODTs have gained considerable attention as preferred alternatives to conventional tablet and capsule formulations In the present study, an attempt has been made to prepare orally disintegrating tablet of the drug Spironolactone using superdisintegrants crosspovidone, crosscarmellose sodium and sodium starch glycolate by direct compression technique. Various scientific techniques including freeze drying, moulding, spray drying, sublimation, direct compression, cotton candy process, mass extrusion, melt granulation etc. have been employed for the development of ODTs. The prepared tablets were evaluated for pre and post compression parameters i.e. angle of repose, car’s index, hausner’s ratio, hardness, friability, wetting time, weight variation, in vitro disintegration and in vitro dissolution study.


2021 ◽  
Vol 11 (3-S) ◽  
pp. 1-6
Author(s):  
Nusrat Ahmed ◽  
Jesmin Akter ◽  
Sabrina Rahman Archie

Since orally disintegrating tablets (ODTs) of tramadol hydrochloride are not available in the market, so an attempt has been taken to formulate and evaluate ODT preparation of tramadol hydrochloride. In this present work, direct compression was the technique used for preparing ODT using superdisintegrants like croscarmellose sodium, sodium starch glycolate and crospovidone at different concentrations. Prepared formulations were evaluated for various quality parameters- angle of repose, Carr’s index, Hausner ratio, weight variation, friability, hardness, drug content, dispersion time, wetting time and in-vitro dissolution. The angle of repose data indicated that the flow property of all the formulations was good to excellent. Comparing with the specifications, the results of Carr's index (%) and Hausner’s ratio indicated that the flowability of all the formulations blend was significantly good. Prepared formulations showed average wetting time ranging from 40-45 seconds, average dispersion time with 3-6 minutes. In-vitro dissolution profile indicated the cumulative % drug release between 30-80% for most of the cases. Keywords: Orally disintegrating tablets, Tramadol hydrochloride, Superdisintegrants, Direct compression.



2021 ◽  
Vol 11 (5) ◽  
pp. 115-120
Author(s):  
Kritika Rai ◽  
Vivek Jain ◽  
Sunil Kumar Jain ◽  
Pushpendra Kumar Khangar

Orally disintegrating tablets (ODT) disintegrate quickly with saliva when administered into the oral cavity and taken without water or chewed. ODT are easy to take for children and the elderly, who may experience difficultly in taking ordinary oral preparations such as tablets, capsules, and powders.  The ODT threes substantial benefits for the patient (or elder) who cannot swallow (Dysphagia), or who is not permitted water intake due to disease. The reason of the current research was to prepare taste masking oral disintegrating tablets of poorly soluble lornoxicam (LXM) by direct compression technique using Kyron T-114 (cation exchange resin) as a taste masking agent. With in various ratios the Drug-resin of 1:4 was established to present best taste masking. The superdisintegrants used in formulation are croscarmellose sodium and cross povidone. Among these croscarmellose sodium demonstrated superior drug release. The tablets were evaluated for friability, weight variation, wetting time, hardness, disintegration time and uniformity of content. Optimized formulations were evaluated for in vitro dissolution test. Amongst all the formulations F-6 was found to be most successful tablets prepared by this technique had disintegration time of 30sec and % CDR 94.78 within 30min. Hence, this advance can be utilized for taste masking of bitter pharmaceutical ingredients leading to superior patient compliance. Keywords: Oral disintegration tablets, Lornoxicam, Kyron T-114, Superdisintegrants, Direct Compression.



2019 ◽  
Vol 9 (6) ◽  
pp. 55-63 ◽  
Author(s):  
Mulchand A. Shende ◽  
Kajal D Chavan

SeDeM design expert technique used to evaluate the risks of poor flow of pharmaceutical powders under preformulation studies which reveals direct compression suitability and prepare robust composition of active pharmaceutical ingredient (API) and excipient in tablets formulation. The purpose of this study was to develop oral disintegrating tablets of Furosemide using different concentration of natural and synthetic superdisintegrants by means of SeDeM design technique. Oral disintegrating tablets (ODT) of Furosemide were prepared by direct compression technique using isolated banana powder and croscarmellose sodium (Ac-di-sol) together with microcrystalline cellulose as superdisintegrants. SeDeM design was performed to check suitability and deficient of excipients and drug for optimized composition derived based on IPP value. These tablets were evaluated for hardness, friability, drug content, weight variation, wetting time and in-vitro dissolution. All the formulations showed low weight variation with dispersion time less than 173.5±0.70 seconds and rapid in-vitro dissolution. The drug content of all the formulations was within the acceptable limits. Lubricated blend composition of F4 found average radius value 5.24, 0.66 and 5.509 for IGC, IP and IPP respectively, compressed tablet shown good physical properties. The optimized formulation F4 showed good release profile with 99.25 percentage drug release compared to other trial batches. It was concluded that natural superdisintegrant (banana powder) showed better disintegrating property than synthetic super disintegrant (Ac-di-sol) in the formulations of ODTs. Keywords: Furosemide, Oral disintegrating tablets, SeDeM expert system, Superdisintegrants



Author(s):  
Jahan Nur Rahman Hazarika ◽  
Pulak Deb

Objective: The objective of present work is to formulate and evaluate immediate release tablets of aceclofenac. Aceclofenac is effectively acting as non-steroidal anti-inflammatory drug (NSAID) of the phenylacetic acid group, which has properties such as anti-inflammatory, analgesic and antipyretic when given orally.Methods: First Pre-formulation studies were carried out such as FTIR, solubility, bulk and tapped density, hounars ratio, Carr’s index, the angle of repose etc. Then the tablets were prepared by direct compression using super disintegrating agents (sodium starch glycolate). To obtain the desired optimum formulation several formulations had been performed with different excipients and their ration. For each formulation, post formulation parameters are determined including hardness, weight variation, friability, disintegration and in vitro dissolution, wetting time, water absorption ratio etc.Results: From the test performed it is found that the formulation F8 is best and satisfies all the criteria as immediate release tablet.Conclusion: From the result, it can be concluded that using Sodium Starch Glycolate at 4% will give the best in vitro drug release.



Author(s):  
Sonali Agarkar

To effectively manage the diabetic mellitus type-II hyperglycemic problem, Gliclazide tablet is the sustained- release tablet that has been designed and fabricated for years. This research evaluated the effects of different grades of hydrophilic polymers in sustained release of Gliclazide tablets made with direct compression technique. HPC GF GRADE, HPMC K4M, and PARTECK® SRP 80 were used as the polymer, Avicel pH 101 (MCC) was used as the highly compressible diluent and Starch 1500 was used as insoluble tablet filler. Aerosil 300 and Magnesium Stearate was used as a Glidant and lubricant for improving the flow property of powder and to decrease the friction between dying wall and punches. Pre-compression characteristics were evaluated for angle of repose, bulk density, compressibility, tapped density, and Hausner's ratio and DSC, XRD, FT-IR. Tablets were prepared on a rotary tablet press machine (Eliza press) and after compression tablets were evaluated for weight variation, thickness, hardness, friability, drug content, and in-vitro drug release study. The physico-chemical properties of blends were estimated accelerated stability study was also developed formulations were kept for stability study for three months as per ICH guidelines and found to be stable. Advantages of formulating insoluble drugs such as Gliclazide is that if it is used in the preparation of capsules or tablets of the drug,its dose might be reduced which is economically beneficial.



INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (12) ◽  
pp. 55-58
Author(s):  
S. S Vishwasrao ◽  
◽  
A. Jadhav

The aim of the present study was to optimize an orally disintegrating tablet of ibuprofen (~100mg) using Musa acuminata (dehydrated banana powder) as a natural super disintegrant. In this work, dehydrated banana powder was used as pharmaceutical excipient because of natural origin and high nutrition properties for paediatric formulation. These tablets were prepared by direct compression technique and compared with formulations made by using synthetic super disintegrants Croscarmellose sodium, micro crystalline cellulose and Cross povidone. FTIR studies of formulations have shown no interactions between drug and excipients. In vitro disintegration and in vitro dissolution profiles were shown that comparative disintegration properties of dehydrated banana powder to that of commonly used synthetic super disintegrants. Short term stability study indicated that formulations were stable for three months. It can be concluded that dehydrated banana powder can be used as natural super disintegrant effectively in paediatric dosage forms and also shows promise as a nutritional pharmaceutical excipient.



Author(s):  
Poreddy Srikanth Reddy ◽  
Penjuri Subhash Chandra Bose ◽  
Vuppula Sruthi ◽  
Damineni Saritha

The aim of the present work was to prepare floating tablets of galantamine HBr using sodium alginate and xanthan gum as matrix forming carriers. Galantamine HBr is used for the treatment of mild to moderate Alzheimer's disease and various other memory impairments, in particular those of vascular origin. The matrix tablet formulations were prepared by varying the concentrations of sodium alginate and xanthan gum. The tablets were prepared by direct compression technique using PVP K-30 as a binder and sodium bicarbonate for development of CO2. The prepared matrix tablets were evaluated for properties such as hardness, thickness, friability, weight variation, floating lag time, compatibility using DSC and FTIR. In vitro dissolution was carried out for 12 hrs in 0.1N HCl at 37±0.5 ºC using USP paddle type dissolution apparatus. It was noted that, all the prepared formulations had desired floating lag time and constantly floated on dissolution medium by maintaining the matrix integrity. The drug release from prepared tablets was found to vary with varying concentration of the polymers, sodium alginate and xanthan gum. From the study it was concluded that floating drug delivery system for galantamine HBr can be prepared by using sodium alginate and xanthan gum as a carrier.



Author(s):  
Sudarshan Singh ◽  
S S Shyale ◽  
P Karade

The aim of this study was to design orally disintegrating tablet (ODT) of Lamotrigine. It is an Antiepileptic drug which is widely used in epilepsy. It is also used in simple and complex partial seizures and secondary generalized tonic-clonic seizures. It is poorly water soluble drug (0.46 mg/ml). Thus, an attempt was made to enhance the water solubility by complexation with β-cyclodextrin (1:1 molar ratios). The orally disintegrating tablet of lamotrigine was prepared by direct compression method using different concentration of superdisintegrants such as Sodium starch glycollate, croscarmellose sodium by sublimating agent such as camphor. The formulations were evaluated for weight variation, hardness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies. The prepared tablets were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The disintegration time for the complexed tablets prepared by different concentration of superdisintegrants was found to be in range of 32.54 ± 0.50 to 55.12 ± 0.57 sec and wetting time of the formulations was found to be in range of 28.47 ± 0.67 to 52.19 ± 0.72 sec. All the formulation showed almost 100 percent of drug release within 15 min. Among all the formulation F6 and F7 prepared with 18% croscarmellose sodium and camphor shows faster drug release, respectively 10 min, F6 gives good result for disintegration time, drug release, wetting time and friability. Further formulations were subjected to stability testing for 30 days at temperature of 40 ± 5 ºC/75 ± 5 %RH. Tablets showed no appreciable changes with respect to physical appearance, drug content, disintegration time and dissolution profiles. Results were statistically analyzed by one-way ANOVA at a p < 0.05. It was found that, the data at any point of time are significant at p < 0.05.



2017 ◽  
Vol 9 (4) ◽  
pp. 92
Author(s):  
Hrishav Das Purkayastha ◽  
Bipul Nath

Objective: The aim of the present investigation was to design and evaluate orally disintegrating tablet (ODT) of Ibuprofen, a NSAID drug used for the treatment of arthritis with a view to improve its oral bioavailability. The focus of the current study was to develop ODT of Ibuprofen using super disintegrants for ease of administration and its physicochemical characterization.Methods: Tablets were made from blends by direct compression method. All the ingredients were passed through mesh no. 80. All the ingredients were co-ground in a pestle motor. The resulting blend was lubricated with magnesium stearate and compressed into tablets using the Cadmach single punch (round shaped, 8 mm thick) machine.Results: Physicals parameters of the prepared tablets like Hardness, Weight variation, Friability, thickness, drug content etc. found within the limits. The disintegration time of prepared ODTs was in the range of 45 to 55 seconds. In vitro dispersion time was found to be 22 to 52 seconds which may be attributed to faster uptake of water due to the porous structure formed by super disintegrants. Short disintegration and faster release of ibuprofen were observed with Cross carmellose sodium as compared to sodium starch glycollate.Conclusion: It is concluded that F3 offered the relatively rapid release of Ibuprofen when compared with other formulations. The increase in the concentrations of super disintegrants may lead to increase in the drug release. The formulation prepared with cross carmellose sodium was offered the relatively rapid release of Ibuprofen when compared with other concentrations of both the super disintegrant. 



2019 ◽  
Vol 9 (4-s) ◽  
pp. 398-403
Author(s):  
Nidhi Kumari Pandey ◽  
Sailesh Kumar Ghatuary ◽  
Amit Dubey ◽  
Prabhat Kumar Jain

The objective of the present work was to develop Gastro retentive dosage forms which would remain in the stomach and upper part or GIT for a prolonged period of time thereby maximizing the drug release at desired site within the time before GRDFs left the stomach and upper part of the GIT, has provoked a great deal of increased interest in the formulation of such drug as floating drug delivery systems. Levofloxacin, (BCS class I) is a fluoroquinolone anti-bacterial agent. The rationale for the formulation of floating matrix tablet are acidic solubility of levofloxacin, residence of Halicobactor pylori mainly in sub region of stomach and the overdosing associated adverse effect due to continuous intake of drug in acute infection. A simple visible spectrophotometric method was employed for the estimation of levofloxacin at 294 nm and Beer’s law is obeyed in the concentration range of 2-10 μg /ml. Floating matrix tablet of levofloxacin was prepared by direct compression method using different polymers like hydroxyl propyl methyl cellulose (HPMC K4) and carbopol 934 as matrix formation polymers, sodium bicarbonate and citric acid was used as gas generating agents. The FTIR spectra of the levofloxacin and other excipients alone and in combination show the compatibility of the drug and excipients. Six formulations of different polymer percentages were formulated (F1-F6). Pre-compression parameters were evaluated. The influence of matrix forming agents and binary mixtures of them on levofloxacin release was investigated. The formulated tablets were characterized by hardness, friability, thickness, weight variation and in vitro drug release. The formulated tablets had acceptable physicochemical characters. The data obtained from the in-vitro dissolution studies of optimized batch F4were fitted in different models. The optimized formulation F4 showed 99.25% drug content and swelling index of 79.85 %. Drug release mechanism was found to be first order kinetics. Levofloxacin floating tablets exhibited increased gastric residence time, there by improved bioavailability and therapeutic effect of the drug.  



Sign in / Sign up

Export Citation Format

Share Document