scholarly journals FORMULATION AND DEVELOPMENT OF SUSTAINED RELEASED GLICLAZIDE TABLETS WITH THE DIFFERENT HYDROPHILIC POLYMER BY USING DIRECT COMPRESSION

Author(s):  
Sonali Agarkar

To effectively manage the diabetic mellitus type-II hyperglycemic problem, Gliclazide tablet is the sustained- release tablet that has been designed and fabricated for years. This research evaluated the effects of different grades of hydrophilic polymers in sustained release of Gliclazide tablets made with direct compression technique. HPC GF GRADE, HPMC K4M, and PARTECK® SRP 80 were used as the polymer, Avicel pH 101 (MCC) was used as the highly compressible diluent and Starch 1500 was used as insoluble tablet filler. Aerosil 300 and Magnesium Stearate was used as a Glidant and lubricant for improving the flow property of powder and to decrease the friction between dying wall and punches. Pre-compression characteristics were evaluated for angle of repose, bulk density, compressibility, tapped density, and Hausner's ratio and DSC, XRD, FT-IR. Tablets were prepared on a rotary tablet press machine (Eliza press) and after compression tablets were evaluated for weight variation, thickness, hardness, friability, drug content, and in-vitro drug release study. The physico-chemical properties of blends were estimated accelerated stability study was also developed formulations were kept for stability study for three months as per ICH guidelines and found to be stable. Advantages of formulating insoluble drugs such as Gliclazide is that if it is used in the preparation of capsules or tablets of the drug,its dose might be reduced which is economically beneficial.

Author(s):  
Shalini Sharma ◽  
Ujjwal Nautiyal

Orally disintegrating tablets (ODTs) have emerged as one of the popular and widely accepted dosage forms, especially for the pediatric and geriatric patients. To obviate the problem of dysphagia and to improve patient compliance, ODTs have gained considerable attention as preferred alternatives to conventional tablet and capsule formulations In the present study, an attempt has been made to prepare orally disintegrating tablet of the drug Spironolactone using superdisintegrants crosspovidone, crosscarmellose sodium and sodium starch glycolate by direct compression technique. Various scientific techniques including freeze drying, moulding, spray drying, sublimation, direct compression, cotton candy process, mass extrusion, melt granulation etc. have been employed for the development of ODTs. The prepared tablets were evaluated for pre and post compression parameters i.e. angle of repose, car’s index, hausner’s ratio, hardness, friability, wetting time, weight variation, in vitro disintegration and in vitro dissolution study.


Author(s):  
SANJEEVANI DESAI ◽  
DURGACHARAN BHAGWAT ◽  
SUNITA SHINDE ◽  
JOHN DISOUZA

Objective: The present study was aimed to develop of the Guanfacine Hydrochloride Extended-release tablets for the treatment of Attention Deficit Hyperactivity Disorder (ADHD). The dosage regimen of Guanfacine Hydrochloride is 4 mg at every 6 h. The concentration of Guanfacine in plasma is fluctuating. Hence, to control the plasma fluctuation and to avoid toxicity problem, Guanfacine Hydrochloride was chosen as a drug with an aim to develop an extended release system for 20 to 24 h. Methods: The design of the system was based on the use of pH-dependent polymer (Hydroxypropyl Methyl Cellulose), pH-independent polymer (Eudragit L 100-55), along with microenvironment modifiers such as organic acid (Fumaric acid) were used in the formulation. Drug-excipient compatibility was studied by FTIR. Before compression, the granules were evaluated for precompression parameters such as bulk density, tapped density, an angle of repose, compressibility index and Hausner’s ratio. After compression, evaluation tests of tablets such as general appearance, hardness, thickness, weight variation, friability, content uniformity, in vitro release studies and stability studies were performed. Results: Out of 9 formulations, the drug release was found to be within the innovator formulation F9. The stability study of formulation F9 revealed there was no significant change in physical and chemical properties of drug stored at 40 °C/75 % RH, 30 °C/65 % RH, 25 °C/60 % RH for 2 mo. Conclusion: Optimized formulation batch F9 showed highest F2 value which indicates similarity with innovator product. The study indicates that Guanfacine Hydrochloride Extended-release tablet was successfully developed.


2021 ◽  
Vol 11 (3-S) ◽  
pp. 1-6
Author(s):  
Nusrat Ahmed ◽  
Jesmin Akter ◽  
Sabrina Rahman Archie

Since orally disintegrating tablets (ODTs) of tramadol hydrochloride are not available in the market, so an attempt has been taken to formulate and evaluate ODT preparation of tramadol hydrochloride. In this present work, direct compression was the technique used for preparing ODT using superdisintegrants like croscarmellose sodium, sodium starch glycolate and crospovidone at different concentrations. Prepared formulations were evaluated for various quality parameters- angle of repose, Carr’s index, Hausner ratio, weight variation, friability, hardness, drug content, dispersion time, wetting time and in-vitro dissolution. The angle of repose data indicated that the flow property of all the formulations was good to excellent. Comparing with the specifications, the results of Carr's index (%) and Hausner’s ratio indicated that the flowability of all the formulations blend was significantly good. Prepared formulations showed average wetting time ranging from 40-45 seconds, average dispersion time with 3-6 minutes. In-vitro dissolution profile indicated the cumulative % drug release between 30-80% for most of the cases. Keywords: Orally disintegrating tablets, Tramadol hydrochloride, Superdisintegrants, Direct compression.


Author(s):  
C Suja ◽  
Sismy C

The goal of this study was to formulate and evaluate norfloxacin sustained release tablets. Norfloxacin sustained release tablets were prepared by wet granulation method using two polymers such as HPMC K 100 M (hydrophilic polymer) and guar gum (natural polymer) and with three polymer ratios (0.5, 1.0 and 1.5). The prepared granules were evaluated to preformulation studies such as angle of repose, bulk density, tapped density, bulkiness, compressibility index and Hauser’s ratio. All the parameters shows that the granules having good flow properties. Then the formulated tablets were taken to evaluation studies such as hardness, weight variation, friability, drug content and thickness. All the parameters were within the acceptable limits. IR spectral analysis showed that there was no interaction between the drug and polymers. The in vitro release study was performed in phosphate buffer pH 7.4 at 293 nm. The in vitro release study showed that if the polymer ratio is increased, then the release of the drug is prolonged. HPMC K 100M shows a prolonged release when compared to guar gum.


2011 ◽  
Vol 47 (3) ◽  
pp. 545-553 ◽  
Author(s):  
Sathis Kumar Dinakaran ◽  
Santhos Kumar ◽  
David Banji ◽  
Harani Avasarala ◽  
Venkateshwar Rao

The purpose of this research study was to establish ziprasidone HCl NR 40 mg and trihexyphenidyl HCl SR 4mg in the form of bi-layer sustained release floating tablets. The tablets were prepared using sodium HPMC K4M / HPMC K15M as bio-adhesive polymers and sodium bicarbonate acting as a floating layer. Tablets were evaluated based on different parameters such as thickness, hardness, friability, weight variation, in vitro dissolution studies, content of active ingredient and IR studies. The physico-chemical properties of the finished product complied with the specifications. In vitro release from the formulation was studied as per the USP XXIII dissolution procedure. The formulations gave a normal release effect followed by sustained release for 12 h which indicates bimodal release of ziprasidone HCl from the matrix tablets. The data obtained was fitted to Peppas models. Analysis of n values of the Korsmeyer equation indicated that the drug release involved non-diffusional mechanisms. By the present study, it can be concluded that bi-layer tablets of ziprasidone HCl and trihexyphenidyl HCl will be a useful strategy for extending the metabolism and improving the bioavailability of Ziprasidone HCl and Trihexyphenidyl HCl.


Author(s):  
Mayuri B. Patil ◽  
Avish D. Maru ◽  
Jayshree S. Bhadane

The aim of the present study was to design and evaluate bilayer tablets of metformin hydrochloride as sustained release form for the treatment of Type-II diabetes mellitus. The basic aim of any Bi-layer tablet formulation is to separate physically or chemically incompatible ingredients and to produce repeat action or prolonged action of tablet. They are many drugs for treating type-II diabetes. Sulphonyl urea and biguanides are used commonly by a wide section of patients. Melt granulation process was used for the formulation of sustained comprising metformin layer and wet granulation of immediate comprising layer of glimepiride. The precompression studies like bulk density, tapped density, angle of repose, compressible index and post formulation studies includes weight variation, hardness, thickness, friability and dissolution study. The in-vitro release profile of Glimepiride was dissolved within 45 min, and Metformin Hydrochloride was able to release more than 12 hrs. They all the formulation was optimized formula due to its higher rate of dissolution and collate all other parameters with the official specifications.


2017 ◽  
Vol 9 (4) ◽  
pp. 92
Author(s):  
Hrishav Das Purkayastha ◽  
Bipul Nath

Objective: The aim of the present investigation was to design and evaluate orally disintegrating tablet (ODT) of Ibuprofen, a NSAID drug used for the treatment of arthritis with a view to improve its oral bioavailability. The focus of the current study was to develop ODT of Ibuprofen using super disintegrants for ease of administration and its physicochemical characterization.Methods: Tablets were made from blends by direct compression method. All the ingredients were passed through mesh no. 80. All the ingredients were co-ground in a pestle motor. The resulting blend was lubricated with magnesium stearate and compressed into tablets using the Cadmach single punch (round shaped, 8 mm thick) machine.Results: Physicals parameters of the prepared tablets like Hardness, Weight variation, Friability, thickness, drug content etc. found within the limits. The disintegration time of prepared ODTs was in the range of 45 to 55 seconds. In vitro dispersion time was found to be 22 to 52 seconds which may be attributed to faster uptake of water due to the porous structure formed by super disintegrants. Short disintegration and faster release of ibuprofen were observed with Cross carmellose sodium as compared to sodium starch glycollate.Conclusion: It is concluded that F3 offered the relatively rapid release of Ibuprofen when compared with other formulations. The increase in the concentrations of super disintegrants may lead to increase in the drug release. The formulation prepared with cross carmellose sodium was offered the relatively rapid release of Ibuprofen when compared with other concentrations of both the super disintegrant. 


2021 ◽  
Vol 11 (5) ◽  
pp. 115-120
Author(s):  
Kritika Rai ◽  
Vivek Jain ◽  
Sunil Kumar Jain ◽  
Pushpendra Kumar Khangar

Orally disintegrating tablets (ODT) disintegrate quickly with saliva when administered into the oral cavity and taken without water or chewed. ODT are easy to take for children and the elderly, who may experience difficultly in taking ordinary oral preparations such as tablets, capsules, and powders.  The ODT threes substantial benefits for the patient (or elder) who cannot swallow (Dysphagia), or who is not permitted water intake due to disease. The reason of the current research was to prepare taste masking oral disintegrating tablets of poorly soluble lornoxicam (LXM) by direct compression technique using Kyron T-114 (cation exchange resin) as a taste masking agent. With in various ratios the Drug-resin of 1:4 was established to present best taste masking. The superdisintegrants used in formulation are croscarmellose sodium and cross povidone. Among these croscarmellose sodium demonstrated superior drug release. The tablets were evaluated for friability, weight variation, wetting time, hardness, disintegration time and uniformity of content. Optimized formulations were evaluated for in vitro dissolution test. Amongst all the formulations F-6 was found to be most successful tablets prepared by this technique had disintegration time of 30sec and % CDR 94.78 within 30min. Hence, this advance can be utilized for taste masking of bitter pharmaceutical ingredients leading to superior patient compliance. Keywords: Oral disintegration tablets, Lornoxicam, Kyron T-114, Superdisintegrants, Direct Compression.


2019 ◽  
Vol 9 (6) ◽  
pp. 55-63 ◽  
Author(s):  
Mulchand A. Shende ◽  
Kajal D Chavan

SeDeM design expert technique used to evaluate the risks of poor flow of pharmaceutical powders under preformulation studies which reveals direct compression suitability and prepare robust composition of active pharmaceutical ingredient (API) and excipient in tablets formulation. The purpose of this study was to develop oral disintegrating tablets of Furosemide using different concentration of natural and synthetic superdisintegrants by means of SeDeM design technique. Oral disintegrating tablets (ODT) of Furosemide were prepared by direct compression technique using isolated banana powder and croscarmellose sodium (Ac-di-sol) together with microcrystalline cellulose as superdisintegrants. SeDeM design was performed to check suitability and deficient of excipients and drug for optimized composition derived based on IPP value. These tablets were evaluated for hardness, friability, drug content, weight variation, wetting time and in-vitro dissolution. All the formulations showed low weight variation with dispersion time less than 173.5±0.70 seconds and rapid in-vitro dissolution. The drug content of all the formulations was within the acceptable limits. Lubricated blend composition of F4 found average radius value 5.24, 0.66 and 5.509 for IGC, IP and IPP respectively, compressed tablet shown good physical properties. The optimized formulation F4 showed good release profile with 99.25 percentage drug release compared to other trial batches. It was concluded that natural superdisintegrant (banana powder) showed better disintegrating property than synthetic super disintegrant (Ac-di-sol) in the formulations of ODTs. Keywords: Furosemide, Oral disintegrating tablets, SeDeM expert system, Superdisintegrants


2013 ◽  
Vol 2 (10) ◽  
pp. 165-169 ◽  
Author(s):  
Manivannan Rangasamy ◽  
Venkata Krishna Reddy Palnati ◽  
Lakshmi Narayana Rao Bandaru

The present study involves in the formulation and evaluation of sustained release tablets of Voriconazole (250mg). The objective of the present study was to formulate Voriconazole sustained release tablets by wet granulation method by using natural (Xanthan gum, Karaya gum) and semi synthetic polymers (HPMC K100M). Lactose was used as diluting agent, Magnesium stearate was used as a lubricant and Talc was used as a glident. These sustained release tablets can release the drug up to 12 hours in predetermined rate. The formulated powder blend was evaluated for bulk density, tapped density, compressibility index and angle of repose. The formulated tablets were evaluated for physical characteristics of sustained release tablets such as thickness, hardness, friability, weight variation and drug content. The results of the formulations found to be within the limits specified in official books. The tablets were evaluated for In-vitro drug release studies by using USP type I dissolution test apparatus. The dissolution test was performed in 0.1 N HCL for 2 hr and phosphate buffer pH 6.8 for 10hrs. The in-vitro cumulative drug release profile of all formulations F1-F10 at 12 hours showed 84.25% to 99.82% drug release, respectively. From the data it was clear that by increasing the amount of polymer in the formulation the amount of drug release was decreased. Hence, Formulation F9 was the most promising formulation as it gives satisfactory release (99.82%) for 12 hours and F9 found to be the best formulation.DOI: http://dx.doi.org/10.3329/icpj.v2i10.16410 International Current Pharmaceutical Journal, September 2013, 2(10): 165-169


Sign in / Sign up

Export Citation Format

Share Document