scholarly journals Forecasting the conditions of the decameter radio wave propagation in the Аrctic region

Author(s):  
T. D. Borisova ◽  
N. F. Blagoveshchenskaya ◽  
A. S. Kalishin

In this paper we present the results of studies the distinctive features of the decameter radio wave propagation based on the results of experimental measurements of radio wave propagation characteristics by the ionospheric oblique sounding (IOS) method and numerical simulation. An algorithm for numerical modeling the trajectory and energetic characteristics of the decameter radio wave propagation in the framework of geometric optics is described. The agreement between the simulated and experimental radio propagation parameters (for example, the values of the maximum observed frequencies) is demonstrated. It is proposed to use the developed diagnostic model of the HF radio channel for the purposes of forecasting in areas not provided with IOS stations.

2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Solomon T. Girma ◽  
Dominic B. O. Konditi ◽  
Ciira Maina

Transmission of a radio signal through a wireless radio channel is affected by refraction, diffraction and reflection, free space loss, object penetration, and absorption that corrupt the originally transmitted signal before radio wave arrives at a receiver antenna. Even though there are many factors affecting wireless radio channels, there are still a number of radio wave propagation models such as Okumura, Hata, free space model, and COST-231 to predict the received signal level at the receiver antenna. However, researchers in the field of radio wave propagation argue that there is no universally accepted propagation model to guarantee a universal recommendation. Thus, this research is aimed at determining the difference between the measured received signal levels and the received signal level calculated from the free space propagation model. System identification method has been proposed to determine this unknown difference. Measured received signal levels were collected from three randomly selected urban areas in Ethiopia using a computer, Nemo test tool, Actix software, Nokia phone, and GPS. The result from the simulations was validated against the received experimental signal level measurement taken in a different environment. From the simulation results, the mean square error (MSE) was 4.169 dB, which is much smaller than the minimum acceptable MSE value of 6 dB for good signal propagation, and 74.76% fit to the estimation data. The results clearly showed that the proposed radio wave propagation model predicts the received signal levels at 900 MHz and 1800 MHz in the study region.


2015 ◽  
Vol 1 (3) ◽  
pp. 49-54 ◽  
Author(s):  
Сергей Пономарчук ◽  
Sergey Ponomarchuk ◽  
Галина Котович ◽  
Galina Kotovich ◽  
Елена Романова ◽  
...  

We present the forecast results of maximal usable frequencies for mid-latitude paths on the base of complex We present the results of forecasting maximum usable frequencies (MUF) on middle-latitude paths on the basis of complex algorithm including modules of the ionosphere and plasmasphere global model (IPGM) and the model of radio wave propagation. The computation of propagation characteristics for decameter radio waves is carried out within the framework of normal wave technique. IPGM developed in ISTP SB RAS enables to compute electron concentration profiles and effective frequency of collisions using minimum number of input data and taking into account physical processes in the Earth’s upper atmosphere. To estimate the efficiency of using IPGM in long-term forecast of radio wave propagation we computed MUF for radio communication in various heliogeophysical conditions. To obtain precision characteristics of MUF forecast we used experimental data of oblique sounding on Magadan–Irkutsk, Khabarovsk–Irkutsk, Norilsk–Irkutsk paths. The paths are equipped with modern ionosphere diagnostic hardware for oblique sounding by continuous chirp signal. We also compared results of MUF forecast using IPGM with computations carried out according IRI model.


Sign in / Sign up

Export Citation Format

Share Document