scholarly journals Numerical Investigation of the Effect of Baffle Inclination Angle on Nanofluid Natural Convection Heat Transfer in A Square Enclosure

2019 ◽  
Vol 12 (2) ◽  
pp. 61-71 ◽  
Author(s):  
Barik AL-Muhjaa ◽  
Khaled Al-Farhany

The characteristics of the conjugate natural convection of (Al2O3-water) nanofluid inside differentially heated enclosure is numerically analyzed using COMSOL Multiphysics (5.3a). The enclosure consists of two vertical walls, the left wall has a thickness and maintain at a uniform hot temperature, while the opposite wall at cold temperature and the horizontal walls are isolated. A high thermal conductivity thin baffle has been added on the insulated bottom wall at a different inclination angles. The effect of the volume fractions of nanoparticles (f), Rayleigh number (Ra), solid wall thermal conductivity ratio (Kr), baffle incline angles (Ø) and the thickness of solid wall (D) on the isothermal lines, fluid flow patterns and the average Nusselt number (Nu)  has been investigated. At low Rayleigh number (Ra=103 to 104) the Isothermal lines are parallel with the vertical wall which is characteristic of conduction heat transfer. on the other hand, when Rayleigh number increase to (Ra=106),  the isotherms lines distribution in the inner fluid become parallel curves with the adiabatic horizontal walls of the enclosure and smooth in this case convection heat transfer becomes dominant. As the Rayleigh number further increases, the average Nusselt number enhance because of buoyancy force become stronger. In addition, the fluid flow within the space is affected by the presence of a fin attached to the lower wall that causes blockage and obstruction of flow near the hot wall, hence the recirculation cores become weak and effect on the buoyant force. The maximum value of the stream function can be noticed in case of nanofluid at (Ø=60), whereas they decrease when (Ø > 60), where the baffle obstruction causing decreases in flow movement. So that the left region temperature increases which cause reduction of the convective heat transfer by the inner fluid temperatures. This is an indication of enhancing of insulation. When the inclination angle increases (Ø >90), the baffle obstruction on flow and fluid resistance becomes smaller and the buoyancy strength increase, as a result, the heat transfer is increasing in this case. As a result of increasing the thermal conductivity from 1 to 10, an increase in the amount of heat transferred through the solid wall to the internal fluid have been noticed. This change can be seen in the isothermal lines, also, there was growth and an increase in the temperature gradient. The increasing of wall thickness from (D=0.1 to 0.4) leads to reduce the intensive heating through the solid wall as well as small heat transferred to the inner fluid. Therefore, it can be noticed that when the wall thickness increases the stream function decrease.

2020 ◽  
Author(s):  
Sattar Aljobair ◽  
Akeel Abdullah Mohammed ◽  
Israa Alesbe

Abstract The natural convection heat transfer and fluid flow characteristic of water based Al2O3 nano-fluids in a symmetrical and unsymmetrical corrugated annulus enclosure has been studied numerically using CFD. The inner cylinder is heated isothermally while the outer cylinder is kept constant cold temperature. The study includes eight models of corrugated annulus enclosure with constant aspect ratio of 1.5. The governing equations of fluid motion and heat transfer are solved using stream-vorticity formulation in curvilinear coordinates. The range of solid volume fractions of nanoparticles extends from PHI=0 to 0.25, and Rayleigh number varies from 104 to 107. Streamlines, isotherms, local and average Nusselt number of inner and outer cylinder has been investigated in this study. Sixty-four correlations have been deduced for the average Nusselt number for the inner and outer cylinders as a function of Rayleigh number have been deduced for eight models and five values of volume fraction of nano particles with an accuracy range 6-12 %. The results show that, the average heat transfer rate increases significantly as particle volume fraction and Rayleigh number increase. Also, increase the number of undulations in unsymmetrical annuli reduces the heat transfer rates which remain higher than that in symmetrical annuli. There is no remarkable change in isotherms contour with increase of volume fraction of nanofluid.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Swastik Acharya ◽  
Sumit Agrawal ◽  
Sukanta K. Dash

Natural convection heat transfer from a vertical hollow cylinder suspended in air has been analyzed numerically by varying the Rayleigh number (Ra) in the laminar (104 ≤ Ra ≤ 108) regime. The simulations have been carried out by changing the ratio of length to pipe diameter (L/D) in the range of 0.05 ≤ L/D≤20. Full conservation equations have been solved numerically for a vertical hollow cylinder suspended in air using algebraic multigrid solver of fluent 13.0. The flow and the temperature field around the vertical hollow cylinder have been observed through velocity vectors and temperature contours for small and large L/D. It has been found that the average Nusselt number (Nu) for vertical hollow cylinder suspended in air increases with the increase in Rayleigh number (Ra) and the Nu for both the inner and the outer surface also increases with Ra. However, with the increase in L/D, average Nu for the outer surface increases almost linearly, whereas the average Nu for the inner surface decreases and attains asymptotic value at higher L/D for low Ra. In this study, the effect of parameters like L/D and Ra on Nu is analyzed, and a correlation for average Nusselt number has been developed for the laminar regime. These correlations are accurate to the level of ±6%.


1970 ◽  
Vol 39 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Sumon Saha ◽  
Noman Hasan ◽  
Chowdhury Md Feroz

A numerical study has been carried out for laminar natural convection heat transfer within a two-dimensional modified square enclosure having a triangular roof. The vertical sidewalls are differentially heated considering a constant flux heat source strip is flush mounted with the left wall. The opposite wall is considered isothermal having a temperature of the surrounding fluid. The rest of the walls are adiabatic. Air is considered as the fluid inside the enclosure. The solution has been carried out on the basis of finite element analysis by a non-linear parametric solver to examine the heat transfer and fluid flow characteristics. Different heights of the triangular roof have been considered for the present analysis. Fluid flow fields and isotherm patterns and the average Nusselt number are presented for the Rayleigh numbers ranging from 103 to 106 in order to show the effects of these governing parameters. The average Nusselt number computed for the case of isoflux heating is also compared with the case of isothermal heating as available in the literature. The outcome of the present investigation shows that the convective phenomenon is greatly influenced by the inclined roof height. Keywords: Natural convection, triangular roof, Rayleigh number, isoflux heating. Doi:10.3329/jme.v39i1.1826 Journal of Mechanical Engineering, vol. ME39, No. 1, June 2008 1-7


Author(s):  
Didarul Ahasan Redwan ◽  
Md. Habibur Rahman ◽  
Hasib Ahmed Prince ◽  
Emdadul Haque Chowdhury ◽  
M. Ruhul Amin

Abstract A numerical study on natural convection heat transfer in a right triangular solar collector filled with CNT-water and Cuwater nanofluids has been conducted. The inclined wall and the bottom wall of the cavity are maintained at a relatively lower temperature (Tc), and higher temperature (Th), respectively, whereas the vertical wall, is kept adiabatic. The governing non-dimensional partial differential equations are solved by using the Galerkin weighted residual finite element method. The Rayleigh number (Ra) and the solid volume-fraction of nanoparticles (ϕ) are varied in the range of 103 ≤ Ra ≤ 106, and 0 ≤ ϕ ≤ 0.1, respectively, to carry out the parametric simulations within the laminar region. Corresponding thermal and flow fields are presented via isotherms and streamlines. Variations of average Nusselt number as a function of Rayleigh number have been examined for different solid volume-fraction of nanoparticles. It has been found that the natural convection heat transfer becomes stronger with the increment of solid volume fraction and Rayleigh number, but the strength of circulation reduces with increasing nanoparticles’ concentration at low Ra. Conduction mode dominates for lower Ra up to a certain limit of 104. It is also observed that when the solid volume fraction is increased from 0 to 0.1 for a particular Rayleigh number, the average Nusselt number is increased to a great extent, but surprisingly, the rate of increment is more pronounced at lower Ra. Moreover, it is seen that Cu-water nanofluid offers slightly better performance compared to CNT-water but the difference is very little, especially at lower Ra.


2021 ◽  
Vol 39 (5) ◽  
pp. 1634-1642
Author(s):  
Syed Fazuruddin ◽  
Seelam Sreekanth ◽  
G Sankara Sekhar Raju

An exhaustive numerical investigation is carried out to analyze the role of an isothermal heated thin fin on fluid flow and temperature distribution visualization in an enclosure. Natural convection within square enclosures finds remarkable pragmatic applications. In the present study, a finite difference approach is performed on two-dimensional laminar flow inside an enclosure with cold side walls and adiabatic horizontal walls. The fluid flow equations are reconstructed into vorticity - stream function formulation and these equations are employed utilizing the finite-difference strategy with incremental time steps. The parametric study includes a wide scope of Rayleigh number, Ra, and inclination angle ϴ of the thin fin. The effect of different Rayleigh numbers ranging Ra = 104-106 with Pr=0.71 for all the inclination angles from 0°-360° with uniform rotational length of angle 450 of an inclined heated fin on fluid flow and heat transfer have been investigated. The heat transfer rate within the enclosure is measured by means of local and average Nusselt numbers. Regardless of inclination angles of the thin fin, a slight enhancement in the average Nusselt number is observed when Rayleigh number increased for both the cases of the horizontal and vertical position of the thin fin. When the fin has inclined no change in average Nusselt number is noticed for distinct Rayleigh numbers.


Author(s):  
Tooraj Yousefi ◽  
Sajjad Mahmoodi Nezhad ◽  
Masood Bigharaz ◽  
Saeed Ebrahimi

Steady state two-dimensional free convection heat transfer in a partitioned cavity with adiabatic horizontal and isothermally vertical walls and an adiabatic partition has been investigated experimentally. The experiments have been carried out using a Mach-Zehnder interferometer. The effects of the angel of the adiabatic partition and Rayleigh number on the heat transfer from the heated wall are investigated. Experiments are performed for the values of Rayleigh number based on the cavity side length in the range between 1.5×105 to 4.5×105 and various angle of the partition with respect to horizon from 0° to 90°. The results indicate that at each angle of the adiabatic partition, by increasing the Rayleigh number, the average Nusselt number and heat transfer increase and at each Rayleigh number, the maximum and the minimum heat transfer occur at θ=45° and θ=90°, respectively. A correlation based on the experimental data for the average Nusselt number of the heated wall as a function of Rayleigh number and the angel of the adiabatic partition is presented in the aforementioned ranges.


2012 ◽  
Vol 16 (5) ◽  
pp. 1317-1323 ◽  
Author(s):  
Ching-Chang Cho ◽  
Her-Terng Yau ◽  
Cha’o-Kuang Chen

This paper investigates the natural convection heat transfer enhancement of Al2O3-water nanofluid in a U-shaped cavity. In performing the analysis, the governing equations are modeled using the Boussinesq approximation and are solved numerically using the finite-volume numerical method. The study examines the effects of the nanoparticle volume fraction, the Rayleigh number and the geometry parameters on the mean Nusselt number. The results show that for all values of the Rayleigh number, the mean Nusselt number increases as the volume fraction of nanoparticles increases. In addition, it is shown that for a given length of the heated wall, extending the length of the cooled wall can improve the heat transfer performance.


Author(s):  
Jong K. Lee ◽  
Seung D. Lee ◽  
Kune Y. Suh

During a severe accident, the reactor core may melt and be relocated to the lower plenum to form a hemispherical pool. If there is no effective cooling mechanism, the core debris may heat up and the molten pool run into natural convection. Natural convection heat transfer was examined in SIGMA RP (Simulant Internal Gravitated Material Apparatus Rectangular Pool). The SIGMA RP apparatus comprises a rectangular test section, heat exchanger, cartridge heaters, cooling jackets, thermocouples and a data acquisition system. The internal heater heating method was used to simulate uniform heat source which is related to the modified Rayleigh number Ra′. The test procedure started with water, the working fluid, filling in the test section. There were two boundary conditions: one dealt with both walls being cooled isothermally, while the other had to with only the upper wall being cooled isothermally. The heat exchanger was utilized to maintain the isothermal boundary condition. Four side walls were surrounded by the insulating material to minimize heat loss. Tests were carried out at 1011 < Ra′ < 1013. The SIGMA RP tests with an appropriate cartridge heater arrangement showed excellent uniform heat generation in the pool. The steady state was defined such that the temperature fluctuation stayed within ±0.2 K over a time period of 5,000 s. The conductive heat transfer was dominant below the critical Rayleigh number Ra′c, whereas the convective heat transfer picked up above Ra′c. In the top and bottom boundary cooling condition, the upward Nusselt number Nuup was greater than the downward Nusselt number Nudn. In particular, the discrepancy between Nuup and Nudn widened with Ra′. The Nuup to Nudn ratio was varied from 7.75 to 16.77 given 1.45×1012 < Ra′ < 9.59×1013. On the other hand, Nuup was increased in absence of downward heat transfer for the case of top cooling. The current rectangular pool testing will be extended to include circular and spherical pools.


1975 ◽  
Vol 97 (4) ◽  
pp. 556-561 ◽  
Author(s):  
N. Seki ◽  
S. Fukusako ◽  
M. Nakaoka

An experimental investigation concerning the effect of density inversion on steady natural convection heat transfer of water between two horizontal concentric cylinders with diameter ratio ranging from 1.18 to 6.39 is carried out. Water, as a testing fluid, has the maximum density at 4°C. Temperature of the inner cylinder is maintained at 0°C, while temperatures of the outer cylinder are varied from 1 to 15°C, with Grashof number ranging from 3.2 × 101 to 2.7 × 105. Photographs and qualitative description of the flow patterns, temperature profiles, local and average Nusselt number are presented. From the present experimental investigation, it is demonstrated that the effect of density inversion is unexpectedly large and the average Nusselt number is a peculiar function of temperature difference between outer and inner cylinder, unlike the previous results on common fluids without density inversion.


1981 ◽  
Vol 103 (4) ◽  
pp. 630-637 ◽  
Author(s):  
E. M. Sparrow ◽  
G. M. Chrysler

Experiments were performed to investigate the natural convection heat transfer characteristics of a short isothermal horizontal cylinder attached to an equi-temperature vertical plate. The apparatus was designed so that the cylinder could be attached to the plate at any one of three positions along the height of the plate. Two cylinders were employed (one at a time) during the course of the experiments, one of which had a length equal to its diameter while the other had a length that was half the diameter. At each attachment position and for each cylinder, the Rayleigh number (based on the cylinder diameter) ranged from 1.4 × 104 to 1.4 × 105. It was found that the interaction of the flat plate boundary layer with the cylinder brought about a reduction of the cylinder Nusselt number relative to that for the classical case of the long isolated horizontal cylinder without end effects. The respective deviations of the Nusselt numbers for the shorter and longer of the participating cylinders from the literature correlation for the isolated cylinder were twenty percent and ten percent. At a given Rayleigh number, the cylinder Nusselt number was quite insensitive to the position of the cylinder along the plate, with the typical data spread due to height being in the 5–7 percent range. The Nusselt number was also rather insensitive to cylinder length, showing a ten percent increase as the length-diameter ratio was increased from one-half to one.


Sign in / Sign up

Export Citation Format

Share Document