scholarly journals Development and analysis of the diacoptic method of interdomain routing with load balancing in a telecommunication network

2018 ◽  
Vol 0 (1(22)) ◽  
pp. 3-24
Author(s):  
Oleksandr Vitalijovych Lemeshko ◽  
Andrii Yevhenovych Ilіashenko ◽  
Tetiana Mykolaiivna Kovalenko ◽  
Olena Serhiivna Nevzorova
2020 ◽  
pp. 32-42
Author(s):  
Maryna Yevdokymenko ◽  
Maryna Shapoval ◽  
Alla Krepko

A practical approach to load balancing in a telecommunication network (TCN) is implementing Traffic Engineering (TE) technology principles to reduce link utilization and improve QoS level. In order to adapt TE solutions with network security requirements, this paper proposes a mathematical model for secure routing, which belongs to the class of flow-based optimization solutions. The model is based on the conditions of multi-flow routing implementation, flow conservation, and TCN link overload prevention. Due to this, the problem of secure routing is formulated in an optimization form. The model’s novelty is the modified conditions of load balancing in TCN. Along with the indicators of link capacity with the help of weighting coefficients, the network security (NS) indicators of TCN elements are also taken into account. The network security (NS) indicators in the TCN modeling process include information security risks of routers and communication links, losses from breach of confidentiality and integrity of information, probability of existing vulnerabilities exploitation, etc. The study confirmed the effectiveness of the proposed solution. On the test TCN topology, it is demonstrated that the use of a secure routing model allows to calculate the routes and provide such an order of load balancing, which compromises meeting the requirements of both QoS and NS. In the routing process, information security risk reduction in packet transmission by about 11.3% was accompanied by an increase (on average by 26%) in the upper bound of the network link utilization


Author(s):  
Shailendra Raghuvanshi ◽  
Priyanka Dubey

Load balancing of non-preemptive independent tasks on virtual machines (VMs) is an important aspect of task scheduling in clouds. Whenever certain VMs are overloaded and remaining VMs are under loaded with tasks for processing, the load has to be balanced to achieve optimal machine utilization. In this paper, we propose an algorithm named honey bee behavior inspired load balancing, which aims to achieve well balanced load across virtual machines for maximizing the throughput. The proposed algorithm also balances the priorities of tasks on the machines in such a way that the amount of waiting time of the tasks in the queue is minimal. We have compared the proposed algorithm with existing load balancing and scheduling algorithms. The experimental results show that the algorithm is effective when compared with existing algorithms. Our approach illustrates that there is a significant improvement in average execution time and reduction in waiting time of tasks on queue using workflowsim simulator in JAVA.


2003 ◽  
Vol 123 (10) ◽  
pp. 1847-1857
Author(s):  
Takahiro Tsukishima ◽  
Masahiro Sato ◽  
Hisashi Onari
Keyword(s):  

2014 ◽  
Vol 134 (8) ◽  
pp. 1104-1113
Author(s):  
Shinji Kitagami ◽  
Yosuke Kaneko ◽  
Hidetoshi Kambe ◽  
Shigeki Nankaku ◽  
Takuo Suganuma
Keyword(s):  

2013 ◽  
Vol 133 (4) ◽  
pp. 891-898
Author(s):  
Takeo Sakairi ◽  
Masashi Watanabe ◽  
Katsuyuki Kamei ◽  
Takashi Tamada ◽  
Yukio Goto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document