Traffic Flow Prediction using SUMO Application with K-Nearest Neighbor (KNN) Method

Author(s):  
Fikri Aditya ◽  
◽  
Surya Michrandi Nasution ◽  
Agus Virgono ◽  
◽  
...  

In Indonesia, the density of traffic flow occurs at the time of leaving and returning to work, long holidays or national holidays such as the end of the year (New Year). This annual routine activity is mostly carried out especially in big cities in Indonesia such as Bandung. Because Bandung is a city that has a lot of tourism, Bandung is therefore always the center of visitors to enjoy weekends or long holidays. So from this problem, we want to create a traffic prediction application that can help to solve congestion problems that have become an annual routine. The several types of vehicles used in the prediction are private cars, motorcycles, taxis, public transportation, large buses, mini buses, and mini trucks. Research conducted using the K-Nearest Neighbor method is a prediction of short-term traffic flow on Jl. Riau Bandung. The input used in making predictions is historical data on the number of vehicles going on Jl. Riau Bandung. The output generated from the use of the K-Nearest Neighbor method is the level of the jam class that runs on Jl. Riau Bandung in 2018 used a simulation on the SUMO (Simulation of Urban Mobility) application. The resulting performance of KNN with k = 3 has an accuracy of 99.21%, k = 5 has an accuracy of 99.60%, and k = 7 has an accuracy rate of 99.21% on 90% training data and 10% testing data.

2021 ◽  
Vol 12 (1) ◽  
pp. 13
Author(s):  
Rachmad Jibril Al Kautsar ◽  
Fitri Utaminingrum ◽  
Agung Setia Budi

 Indonesian citizens who use motorized vehicles are increasing every year. Every motorcyclist in Indonesia must wear a helmet when riding a motorcycle. Even though there are rules that require motorbike riders to wear helmets, there are still many motorists who disobey the rules. To overcome this, police officers have carried out various operations (such as traffic operation, warning, etc.). This is not effective because of the number of police officers available, and the probability of police officers make a mistake when detecting violations that might be caused due to fatigue. This study asks the system to detect motorcyclists who do not wear helmets through a surveillance camera. Referring to this reason, the Circular Hough Transform (CHT), Histogram of Oriented Gradient (HOG), and K-Nearest Neighbor (KNN) are used. Testing was done by using images taken from surveillance cameras divided into 200 training data and 40 testing data obtained an accuracy rate of 82.5%.


Respati ◽  
2018 ◽  
Vol 13 (2) ◽  
Author(s):  
Eri Sasmita Susanto ◽  
Kusrini Kusrini ◽  
Hanif Al Fatta

INTISARIPenelitian ini difokuskan untuk mengetahui uji kelayakan prediksi kelulusan mahasiswa Universitas AMIKOM Yogyakarta. Dalam hal ini penulis memilih algoritma K-Nearest Neighbors (K-NN) karena K-Nearest Neighbors (K-NN) merupakan algoritma  yang bisa digunakan untuk mengolah data yang bersifat numerik dan tidak membutuhkan skema estimasi parameter perulangan yang rumit, ini berarti bisa diaplikasikan untuk dataset berukuran besar.Input dari sistem ini adalah Data sampel berupa data mahasiswa tahun 2014-2015. pengujian pada penelitian ini menggunakn dua pengujian yaitu data testing dan data training. Kriteria yang digunakan dalam penelitian ini adalah , IP Semester 1-4, capaian SKS, Status Kelulusan. Output dari sistem ini berupa hasil prediksi kelulusan mahasiswa yang terbagi menjadi dua yaitu tepat waktu dan kelulusan tidak tepat waktu.Hasil pengujian menunjukkan bahwa Berdasarkan penerapan k=14 dan k-fold=5 menghasilkan performa yang terbaik dalam memprediksi kelulusan mahasiswa dengan metode K-Nearest Neighbor menggunakan indeks prestasi 4 semester dengan nilai akurasi= 98,46%, precision= 99.53% dan recall =97.64%.Kata kunci: Algoritma K-Nearest Neighbors, Prediksi Kelulusan, Data Testing, Data Training ABSTRACTThis research is focused on knowing the feasibility test of students' graduation prediction of AMIKOM University Yogyakarta. In this case the authors chose the K-Nearest Neighbors (K-NN) algorithm because K-Nearest Neighbors (K-NN) is an algorithm that can be used to process data that is numerical and does not require complicated repetitive parameter estimation scheme, this means it can be applied for large datasets.The input of this system is the sample data in the form of student data from 2014-2015. test in this research use two test that is data testing and training data. The criteria used in this study are, IP Semester 1-4, achievement of SKS, Graduation Status. The output of this system in the form of predicted results of student graduation which is divided into two that is timely and graduation is not timely.The result of the test shows that based on the application of k = 14 and k-fold = 5, the best performance in predicting the students' graduation using K-Nearest Neighbor method uses 4 semester achievement index with accuracy value = 98,46%, precision = 99.53% and recall = 97.64%.Keywords: K-Nearest Neighbors Algorithm, Graduation Prediction, Testing Data, Training Data


2019 ◽  
Vol 11 (2) ◽  
pp. 307
Author(s):  
Asrianda Asrianda ◽  
Risawandi Risawandi ◽  
Gunarwan Gunarwan

K-Nearest Neighbor is a method that can classify data based on the closest distance. In addition, K-NN is one of the supervised learning algorithms with learning processes based on the value of the target variable associated with the value of the predictor variable. In the K-NN algorithm, all data must have a label, so that when a new data is given, the data will be compared with the existing data, then the most similar data is taken by looking at the label of that data. Filling and processing many questionnaires to determining the results of lectural evaluation from the performance of lecturers certainly requires a lot of time and process. Therefore, it is necessary to apply the K-NN Manhattan Distance method. In this study, the testing data is taken from one of the training data and has a classification result that is "Very Good". After going through the K-NN Manhattan Distance method with k being the closest / smallest neighbor, then the following results are obtained: Distance 5.4, the classification result is "Very Good" and 74.03% of similarity value. Based on the results obtained, the result of the classification from K-NN Manhattan Distance method show similarities with the results of the pre-existing classification.


2021 ◽  
Vol 6 (2) ◽  
pp. 111-119
Author(s):  
Daurat Sinaga ◽  
Feri Agustina ◽  
Noor Ageng Setiyanto ◽  
Suprayogi Suprayogi ◽  
Cahaya Jatmoko

Indonesia is one of the countries with a large number of fauna wealth. Various types of fauna that exist are scattered throughout Indonesia. One type of fauna that is owned is a type of bird animal. Birds are often bred as pets because of their characteristic facial voice and body features. In this study, using the Gray Level Co-Occurrence Matrix (GLCM) based on the k-Nearest Neighbor (K-NN) algorithm. The data used in this study were 66 images which were divided into two, namely 55 training data and 11 testing data. The calculation of the feature value used in this study is based on the value of the GLCM feature extraction such as: contrast, correlation, energy, homogeneity and entropy which will later be calculated using the k-Nearest Neighbor (K-NN) algorithm and Eucliden Distance. From the results of the classification process using k-Nearest Neighbor (K-NN), it is found that the highest accuracy results lie at the value of K = 1 and at an degree of 0 ° of 54.54%.


2018 ◽  
Vol 30 (4) ◽  
pp. 445-456 ◽  
Author(s):  
Zhao Liu ◽  
Jianhua Guo ◽  
Jinde Cao ◽  
Yun Wei ◽  
Wei Huang

It is critical to implement accurate short-term traffic forecasting in traffic management and control applications. This paper proposes a hybrid forecasting method based on neural networks combined with the K-nearest neighbor (K-NN) method for short-term traffic flow forecasting. The procedure of training a neural network model using existing traffic input-output data, i.e., training data, is indispensable for fine-tuning the prediction model. Based on this point, the K-NN method was employed to reconstruct the training data for neural network models while considering the similarity of traffic flow patterns. This was done through collecting the specific state vectors that were closest to the current state vectors from the historical database to enhance the relationship between the inputs and outputs for the neural network models. In this study, we selected four different neural network models, i.e., back-propagation (BP) neural network, radial basis function (RBF) neural network, generalized regression (GR) neural network, and Elman neural network, all of which have been widely applied for short-term traffic forecasting. Using real world traffic data, the  experimental results primarily show that the BP and GR neural networks combined with the K-NN method have better prediction performance, and both are sensitive to the size of the training data. Secondly, the forecast accuracies of the RBF and Elman neural networks combined with the K-NN method both remain fairly stable with the increasing size of the training data. In summary, the proposed hybrid forecasting  approach outperforms the conventional forecasting models, facilitating the implementation of short-term  traffic forecasting in traffic management and control applications.


Author(s):  
Yessi Jusman ◽  
Widdya Rahmalina ◽  
Juni Zarman

Adolescence always searches for the identity to shape the personality character. This paper aims to use the artificial intelligent analysis to determine the talent of the adolescence. This study uses a sample of children aged 10-18 years with testing data consisting of 100 respondents. The algorithm used for analysis is the K-Nearest Neigbor and Naive Bayes algorithm. The analysis results are performance of accuracy results of both algorithms of classification. In knowing the accurate algorithm in determining children's interests and talents, it can be seen from the accuracy of the data with the confusion matrix using the RapidMiner software for training data, testing data, and combined training and testing data. This study concludes that the K-Nearest Neighbor algorithm is better than Naive Bayes in terms of classification accuracy.


Sign in / Sign up

Export Citation Format

Share Document