scholarly journals Estimation of secondary organic aerosol (SOA) production from traffic from the city of Athens

2013 ◽  
Vol 1 (1) ◽  
pp. 33-38

Estimates of the amount of secondary organic aerosol formed in the atmosphere from the degradation of traffic C6-C12 hydrocarbon emissions in the city of Athens are presented. Around 1.26 tn of organic aerosol is estimated to be produced during a six hours air pollution episode from the aromatic hydrocarbons, the other NMHC groups contributing an additional 0.2 tn. The main contributor to the SOA production is m-xylene. It accounts, together with toluene, for around 50% of the produced organic aerosol. The main aerosol products that are expected to form from the Athens NMHC traffic mixture are nitrophenols. Due to predominant wind flow to the S-SE direction in the area, a portion of these aerosols is likely to contribute to the SOA burden of the marine atmosphere over SE Mediterranean. These results are also relevant to ozone abatement strategies involving species-specific NMHC reductions and affecting fine particulate composition and concentrations.

2018 ◽  
Vol 52 (22) ◽  
pp. 13381-13390 ◽  
Author(s):  
Simone M. Pieber ◽  
Anastasios Kambolis ◽  
Davide Ferri ◽  
Deepika Bhattu ◽  
Emily A. Bruns ◽  
...  

2016 ◽  
Author(s):  
L. Li ◽  
P. Tang ◽  
S. Nakao ◽  
D. R. Cocker III

Abstract. The molecular structure of volatile organic compounds (VOC) determines their oxidation pathway, directly impacting secondary organic aerosol (SOA) formation. This study comprehensively investigates the impact of molecular structure on SOA formation from the photooxidation of twelve different eight to nine carbon aromatic hydrocarbons under low NOx conditions. The effects of the alkyl substitute number, location, carbon chain length and branching structure on the photooxidation of aromatic hydrocarbons are demonstrated by analyzing SOA yield, chemical composition and physical properties. Aromatic hydrocarbons, categorized into five groups, show a yield order of ortho (o-xylene and o-ethyltoluene) > one substitute (ethylbenzene, propylbenzene and isopropylbenzene) > meta (m-xylene and m-ethyltoluene) > three substitute (trimethylbenzenes) > para (p-xylene and p-ethyltoluene). SOA yields of aromatic hydrocarbon photooxidation do not monotonically decrease when increasing alkyl substitute number. The ortho position promotes SOA formation while the para position suppresses aromatic oxidation and SOA formation. Observed SOA chemical composition and volatility confirm that higher yield is associated with further oxidation. SOA chemical composition also suggests that aromatic oxidation increases with increasing alkyl substitute chain length and branching structure. Further, carbon dilution theory developed by Li et al. (2015a) is extended in this study to serve as a standard method to determine the extent of oxidation of an alkyl substituted aromatic hydrocarbon.


2010 ◽  
Vol 10 (12) ◽  
pp. 30205-30277 ◽  
Author(s):  
M. Shrivastava ◽  
J. Fast ◽  
R. Easter ◽  
W. I. Gustafson ◽  
R. A. Zaveri ◽  
...  

Abstract. The Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is modified to include a volatility basis set (VBS) treatment of secondary organic aerosol formation. The VBS approach, coupled with SAPRC-99 gas-phase chemistry mechanism, is used to model gas-particle partitioning and multiple generations of gas-phase oxidation of organic vapors. In addition to the detailed 9-species VBS, a simplified mechanism using 2 volatility species (2-species VBS) is developed and tested for similarity to the 9-species VBS in terms of both mass and oxygen-to-carbon ratios of organic aerosols in the atmosphere. WRF-Chem results are evaluated against field measurements of organic aerosols collected during the MILAGRO 2006 campaign in the vicinity of Mexico City. The simplified 2-species mechanism reduces the computational cost by a factor of 2 as compared to 9-species VBS. Both ground site and aircraft measurements suggest that the 9-species and 2-species VBS predictions of total organic aerosol mass as well as individual organic aerosol components including primary, secondary, and biomass burning are comparable in magnitude. In addition, oxygen-to-carbon ratio predictions from both approaches agree within 25%, providing evidence that the 2-species VBS is well suited to represent the complex evolution of organic aerosols. Model sensitivity to amount of anthropogenic semi-volatile and intermediate volatility (S/IVOC) precursor emissions is also examined by doubling the default emissions. Both the emission cases significantly under-predict primary organic aerosols in the city center and along aircraft flight transects. Secondary organic aerosols are predicted reasonably well along flight tracks surrounding the city, but are consistently over-predicted downwind of the city. Also, oxygen-to-carbon ratio predictions are significantly improved compared to prior studies by adding 15% oxygen mass per generation of oxidation; however, all modeling cases still under-predict these ratios downwind as compared to measurements, suggesting a need to further improve chemistry parameterizations of secondary organic aerosol formation.


2017 ◽  
Vol 17 (3) ◽  
pp. 2053-2065 ◽  
Author(s):  
Ibrahim M. Al-Naiema ◽  
Elizabeth A. Stone

Abstract. Products of secondary organic aerosol (SOA) from aromatic volatile organic compounds (VOCs) – 2,3-dihydroxy-4-oxopentanoic acid, dicarboxylic acids, nitromonoaromatics, and furandiones – were evaluated for their potential to serve as anthropogenic SOA tracers with respect to their (1) ambient concentrations and detectability in PM2.5 in Iowa City, IA, USA; (2) gas–particle partitioning behaviour; and (3) source specificity by way of correlations with primary and secondary source tracers and literature review. A widely used tracer for toluene-derived SOA, 2,3-dihydroxy-4-oxopentanoic acid was only detected in the particle phase (Fp = 1) at low but consistently measurable ambient concentrations (averaging 0.3 ng m−3). Four aromatic dicarboxylic acids were detected at relatively higher concentrations (9.1–34.5 ng m−3), of which phthalic acid was the most abundant. Phthalic acid had a low particle-phase fraction (Fp =  0.26) likely due to quantitation interferences from phthalic anhydride, while 4-methylphthalic acid was predominantly in the particle phase (Fp = 0.82). Phthalic acid and 4-methylphthalic acid were both highly correlated with 2,3-dihydroxy-4-oxopentanoic acid (rs = 0.73, p = 0.003; rs = 0.80, p < 0.001, respectively), suggesting that they were derived from aromatic VOCs. Isophthalic and terephthalic acids, however, were detected only in the particle phase (Fp = 1), and correlations suggested association with primary emission sources. Nitromonoaromatics were dominated by particle-phase concentrations of 4-nitrocatechol (1.6 ng m−3) and 4-methyl-5-nitrocatechol (1.6 ng m−3) that were associated with biomass burning. Meanwhile, 4-hydroxy-3-nitrobenzyl alcohol was detected in a lower concentration (0.06 ng m−3) in the particle phase only (Fp = 1) and is known as a product of toluene photooxidation. Furandiones in the atmosphere have only been attributed to the photooxidation of aromatic hydrocarbons; however the substantial partitioning toward the gas phase (Fp  ≤  0.16) and their water sensitivity limit their application as tracers. The outcome of this study is the demonstration that 2,3-dihydroxy-4-oxopentanoic acid, phthalic acid, 4-methylphthalic acid, and 4-hydroxy-3-nitrobenzyl alcohol are good candidates for tracing SOA from aromatic VOCs.


2011 ◽  
Vol 11 (13) ◽  
pp. 6639-6662 ◽  
Author(s):  
M. Shrivastava ◽  
J. Fast ◽  
R. Easter ◽  
W. I. Gustafson ◽  
R. A. Zaveri ◽  
...  

Abstract. The Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is modified to include a volatility basis set (VBS) treatment of secondary organic aerosol formation. The VBS approach, coupled with SAPRC-99 gas-phase chemistry mechanism, is used to model gas-particle partitioning and multiple generations of gas-phase oxidation of organic vapors. In addition to the detailed 9-species VBS, a simplified mechanism using 2 volatility species (2-species VBS) is developed and tested for similarity to the 9-species VBS in terms of both mass and oxygen-to-carbon ratios of organic aerosols in the atmosphere. WRF-Chem results are evaluated against field measurements of organic aerosols collected during the MILAGRO 2006 campaign in the vicinity of Mexico City. The simplified 2-species mechanism reduces the computational cost by a factor of 2 as compared to 9-species VBS. Both ground site and aircraft measurements suggest that the 9-species and 2-species VBS predictions of total organic aerosol mass as well as individual organic aerosol components including primary, secondary, and biomass burning are comparable in magnitude. In addition, oxygen-to-carbon ratio predictions from both approaches agree within 25 %, providing evidence that the 2-species VBS is well suited to represent the complex evolution of organic aerosols. Model sensitivity to amount of anthropogenic semi-volatile and intermediate volatility (S/IVOC) precursor emissions is also examined by doubling the default emissions. Both the emission cases significantly under-predict primary organic aerosols in the city center and along aircraft flight transects. Secondary organic aerosols are predicted reasonably well along flight tracks surrounding the city, but are consistently over-predicted downwind of the city. Also, oxygen-to-carbon ratio predictions are significantly improved compared to prior studies by adding 15 % oxygen mass per generation of oxidation; however, all modeling cases still under-predict these ratios downwind as compared to measurements, suggesting a need to further improve chemistry parameterizations of secondary organic aerosol formation.


2017 ◽  
Vol 200 ◽  
pp. 143-164 ◽  
Author(s):  
Alla Zelenyuk ◽  
Dan G. Imre ◽  
Jacqueline Wilson ◽  
David M. Bell ◽  
Kaitlyn J. Suski ◽  
...  

When secondary organic aerosol (SOA) particles are formed by ozonolysis in the presence of gas-phase polycyclic aromatic hydrocarbons (PAHs), their formation and properties are significantly different from SOA particles formed without PAHs. For all SOA precursors and all PAHs, discussed in this study, the presence of the gas-phase PAHs during SOA formation significantly affects particle mass loadings, composition, growth, evaporation kinetics, and viscosity. SOA particles formed in the presence of PAHs have, as part of their compositions, trapped unreacted PAHs and products of heterogeneous reactions between PAHs and ozone. Compared to ‘pure’ SOA particles, these particles exhibit slower evaporation kinetics, have higher fractions of non-volatile components, like oligomers, and higher viscosities, assuring their longer atmospheric lifetimes. In turn, the increased viscosity and decreased volatility provide a shield that protects PAHs from chemical degradation and evaporation, allowing for the long-range transport of these toxic pollutants. The magnitude of the effect of PAHs on SOA formation is surprisingly large. The presence of PAHs during SOA formation increases mass loadings by factors of two to five, and particle number concentrations, in some cases, by more than a factor of 100. Increases in SOA mass, particle number concentrations, and lifetime have important implications to many atmospheric processes related to climate, weather, visibility, and human health, all of which relate to the interactions between biogenic SOA and anthropogenic PAHs. The synergistic relationship between SOA and PAHs presented here are clearly complex and call for future research to elucidate further the underlying processes and their exact atmospheric implications.


2005 ◽  
Vol 2 (1) ◽  
pp. 35 ◽  
Author(s):  
David Johnson ◽  
Michael E. Jenkin ◽  
Klaus Wirtz ◽  
Montserrat Martin-Reviejo

Environmental Context. Atmospheric particulate material can affect the radiative balance of the atmosphere and is believed to be detrimental to human health. Secondary organic aerosols (SOA), which make a significant contribution to the total atmospheric burden of fine particulate material, are formed in situ following the photochemical transformation of organic pollutants into relatively less-volatile, oxygenated compounds which can subsequently transfer from the gas phase to a particle phase. SOA formation from the atmospheric photooxidation of aromatic hydrocarbons—present, for example, as a result of automobile use—is believed to be important in the urban environment and yet the mechanisms are not well understood. For example, even the reasons for observed variations in the relative propensity for SOA formation, from the photooxidation of various simple aromatic hydrocarbons, are not clear. Abstract. The formation and composition of secondary organic aerosol (SOA) from the photooxidation of benzene, p-xylene, and 1,3,5-trimethylbenzene has been simulated using the Master Chemical Mechanism version 3.1 (MCM v3.1) coupled to a representation of the transfer of organic material from the gas to particle phase. The combined mechanism was tested against data obtained from a series of experiments conducted at the European Photoreactor (EUPHORE) outdoor smog chamber in Valencia, Spain. Simulated aerosol mass concentrations compared reasonably well with the measured SOA data only after absorptive partitioning coefficients were increased by a factor of between 5 and 30. The requirement of such scaling was interpreted in terms of the occurrence of unaccounted-for association reactions in the condensed organic phase leading to the production of relatively more nonvolatile species. Comparisons were made between the relative aerosol forming efficiencies of benzene, toluene, p-xylene, and 1,3,5-trimethylbenzene, and differences in the OH-initiated degradation mechanisms of these aromatic hydrocarbons. A strong, nonlinear relationship was observed between measured (reference) yields of SOA and (proportional) yields of unsaturated dicarbonyl aldehyde species resulting from ring-fragmenting pathways. This observation, and the results of the simulations, is strongly suggestive of the involvement of reactive aldehyde species in association reactions occurring in the aerosol phase, thus promoting SOA formation and growth. The effect of NOx concentrations on SOA formation efficiencies (and formation mechanisms) is discussed.


2009 ◽  
Vol 9 (1) ◽  
pp. 1873-1905
Author(s):  
A. W. H. Chan ◽  
K. E. Kautzman ◽  
P. S. Chhabra ◽  
J. D. Surratt ◽  
M. N. Chan ◽  
...  

Abstract. Current atmospheric models do not include secondary organic aerosol (SOA) production from gas-phase reactions of polycyclic aromatic hydrocarbons (PAHs). Recent studies have shown that primary semivolatile emissions, previously assumed to be inert, undergo oxidation in the gas phase, leading to SOA formation. This opens the possibility that low-volatility gas-phase precursors are a potentially large source of SOA. In this work, SOA formation from gas-phase photooxidation of naphthalene, 1-methylnaphthalene (1-MN), 2-methylnaphthalene (2-MN), and 1,2-dimethylnaphthalene (1,2-DMN) is studied in the Caltech dual 28-m3 chambers. Under high-NOx conditions and aerosol mass loadings between 10 and 40 μg m


Sign in / Sign up

Export Citation Format

Share Document