water sensitivity
Recently Published Documents


TOTAL DOCUMENTS

252
(FIVE YEARS 93)

H-INDEX

22
(FIVE YEARS 7)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 316
Author(s):  
Stefano Chimenti ◽  
Marco Cerra ◽  
Tito Zanetta ◽  
Jose Ramon Leiza ◽  
María Paulis

In this paper, two phosphate functionalized acrylic binders are formulated to yield direct-to-metal paints without using corrosion inhibitors. The difference between both binders is the addition of polystearylacrylate crystalline nanodomains in one of them, and an amorphous methyl methacylate-co-butyl acrylate copolymer in the other. The water sensitivity, mechanical stability, adhesion, and the performance of the paints against corrosion (high humidity resistance, accelerated weathering, and salt-spray tests) are assessed and compared with a DTM paint formulated from a commercial binder. The performance of both phosphate functionalized paints formulated without corrosion inhibitors in high humidity and weathering tests is superior to the commercial DTM paint formulated without corrosion inhibitors and similar to the DTM paint formulated with them. Furthermore, the paint based on the amorphous copolymer binder provides significantly good performance in the salt spray test (even superior to that of the DTM paint formulated with corrosion inhibitors).


Author(s):  
Simon Guihéneuf ◽  
Arnaud Perrot ◽  
Damien Rangeard ◽  
Mathilde Cocheteux

Currently, much consideration is given to earthen building materials regarding their highly sustainable properties. Numerous studies have highlighted their structural ability but their water sensitivity is still limiting a potentially more spread use. To limit this sensitivity several studies have recently brought out the positive effects of bio-stabilisers such as linseed oil or xanthan gum. These recent developments allow bio-stabilized earthen materials to be resistant to immersion in water. Also, a French experimental standard (XP P 13-901) for compressed earth blocks already asks for a minimal compressive strength after a two-hour immersion that is overly severe and is difficult to satisfy without the addition of high contents of hydraulic binders. In this paper, a critical study of this compressive test after immersion is conducted on bio-stabilized (linseed oil and xanthan gum) samples of different Breton earths. Some testing adjustments are suggested and the water-diffusion in the samples is followed and linked to previously obtained capillary absorption coefficients. It is shown that the effect of immersion on the mechanical strength depends on the sample size and that an equivalence between size and immersion time can be made based on an equivalent penetration depth. Linseed oil and xanthan gum help to significantly increase the compressive strength of the earthen materials after immersion and allow to avoid the addition of hydraulic binders in earthen blocks to obtained a strong water resistance. The water diffusion in the sample during the immersion can be linked to capillary absorption behaviour, thus a water content and a compressive strength after a given time of immersion could be easily predicted.


Author(s):  
Simon Guihéneuf ◽  
Arnaud Perrot ◽  
Damien Rangeard

In the current context, the development of new bio-based and local building materials is becoming mandatory. Among them, earthen materials have a strong potential to be used as sustainable structural materials but their variability and their water sensitivity impact their mechanical properties that are difficult to guaranty. Recent developments have emphasised the ability of some bio-based additions to help to ensure these properties: linseed oil and xanthan gum are part of them. In this paper three different Breton earths, representative of a certain local variability, are studied. The impact of the selected bio-based additions on earths’ rheological behaviour is followed in order to adapt it to different forming processes. Then, the mechanical properties of different earth-addition combinations at the dry state, exposed to hygric variations and immersion are investigated for different forming processes. The findings highlight the fact that xanthan gum and linseed oil have a relevant ability to stabilise earthen blocks, that can be processed using different promising forming methods.


Author(s):  
Abdelrahman Mohamad ◽  
Fouzia Khadraoui ◽  
Nassim Sebaibi ◽  
Mohamed Boutouil ◽  
Daniel Chateigner

The necessity to build energy-efficient and low environmental impact buildings favors the development of biobased light-weight materials as hemp-foam concretes. In this context, experimental protocols were developed to study the effects of hemp shiv and the production methods on the water sensitivity of bio-based foamed concrete (BBFC). Foam concrete incorporates several materials and compounds: cement, protein-based foaming agent, ground granulated blast–furnace slag, metakaolin as a binder, and hemp shiv as bio-based aggregates. The study investigated first the effect of the incorporation of hemp shiv (from 0 to 15 vol%) and then the elaboration method, comparing direct method versus preformed method on the resulting physical properties, the isotherms sorption-desorption and the capillary water absorption of hemp-foam concretes. We observe an increasing porosity of the concrete with hemp shives content. Additionally, hemp shives increase the adsorption and the capillary absorption of water. Moreover, the preformed method produces concretes more sensitive to water than the direct methods since it increases its porosities.


2022 ◽  
Vol 12 (1) ◽  
pp. 490
Author(s):  
Caroline Moura ◽  
Lucas Nascimento ◽  
Carlos Loureiro ◽  
Mafalda Rodrigues ◽  
Joel Oliveira ◽  
...  

Steel slag is a byproduct generated as waste during the steelmaking process and can be considered a cost-effective and environmentally acceptable alternative to replace natural aggregates. Using steel slag aggregates (SSA) to produce asphalt mixtures promotes sustainability and circular economy principles by using an industrial byproduct as a raw material. Thus, this work mainly aims to design more sustainable asphalt mixtures with high amounts of SSA that fit the circular economy expectations. This work developed two asphalt mixtures with SSA for surface (AC 14 surf) and binder/base (AC 20 bin/base) courses. Initially, the excellent wearing and polishing resistance of SSA and their good affinity with bitumen demonstrated the potential of this byproduct to be used in asphalt mixtures. Then, when analyzing the influence of using two different SSA incorporation rates (50% and a percentage close to 100%) in both asphalt mixtures, it was concluded that the use of SSA should be limited to 75% to avoid excessive air void contents and durability problems. The importance of considering the different particle densities of SSA and natural aggregates was highlighted during the mix design by defining a relationship between an effective and equivalent binder content. Finally, the mechanical performance of AC 14 and AC 20 with 75% SSA incorporation was compared to identical conventional mixtures produced with natural granite aggregates. The results obtained showed that the asphalt mixtures with 75% SSA have some workability problems due to the rough and porous surface of SSA. However, they present an excellent water sensitivity and permanent deformation resistance, surpassing the performance of the conventional asphalt mixtures.


2022 ◽  
Vol 9 ◽  
Author(s):  
Jingchen Zhang ◽  
Baocheng Wu ◽  
Fei Wang ◽  
Shanzhi Shi ◽  
Jinjun Liu ◽  
...  

As an important energy replacement block in China, the tight conglomerate oilfields in the Mahu area are difficult to develop and are characterized by strong heterogeneity, large horizontal stress differences, and undeveloped natural fractures. However, new development processes including temporary blocking diversion and large section-multiple clusters have been implemented on the oilfields in the past few years. In 2020, two adjacent horizontal wells in the MD well area experienced a poor fracturing development effect compared with the earlier wells in this area. Analysis suggests that the main reasons are water sensitivity of the reservoir, insufficient fracturing scale, and/or interference from the adjacent old wells. To ameliorate the problem, this study presents an experimental study of multiple temporary plugging and refracturing technology in long horizontal well sections, in combination with electromagnetic and microseismic monitoring. Results from the study show a great difference between the two monitoring techniques, which is attributed to their different detection principles. Interestingly, the combination of the two approaches provides a greater performance than either approach alone. As the fracturing fluid flow diversion is based on temporary plugging diversion and electromagnetic monitoring of fracturing fluid is advantageous in temporary plugging diversion monitoring, both approaches require further research and development to address complex situations such as multiple temporary plugging and refracturing in long intervals of adjacent older wells.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6452
Author(s):  
Maria M. A. S. Maia ◽  
Marisa Dinis-Almeida ◽  
Fernando C. G. Martinho

Two of the main problems encountered in flexible pavements are the stripping of coarse aggregates and the formation of rut depth due to increases in the volume of road traffic and heavy vehicle loads, especially in areas where speeds are low. The existence of rut depth also affects the comfort and safety of road users due to the water accumulation on the pavement surface and reducing tire/pavement friction, which can lead to hydroplaning phenomena. In this research, it was proven that the use of fillers of different origins influences the affinity between aggregates and the binder. The effect of an adhesion promoter in the mix design (such as the amine included in cellulosic fiber pellets) was also studied. Several tests were carried out to determine the binder/aggregate adhesiveness, water sensitivity and resistance to permanent deformation, to evaluate the performance of different blends. It was found that the addition of this additive increased 10% of the aggregate surfaces covered with bitumen when compared with the aggregates without this addition. As expected, the water sensitivity tests showed that the mixture with granitic filler had the lowest indirect tensile strength ratio (ITSR) value (70%), while the mixtures with limestone filler led to the highest percentages (ranging from 83 to 93%). As for the results of the wheel tracking tests (WTT), it was confirmed that the use of limestone filler translates into an improvement in the performance against the permanent deformation of the asphalt mixtures. The mixture with higher bitumen content and adhesion promoter revealed the best average results.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xianlun Leng ◽  
Chuan Wang ◽  
Juan Zhang ◽  
Qian Sheng ◽  
Shengliang Cao ◽  
...  

Loess landslides induced by rainfall and traffic load are significant hazards during the construction and operation of highways in many loess-covered areas. Studies of the deformation and stability of loess slopes with seepage fissures are limited. In the study, a case study of the Yangpoyao loess slope with seepage fissures in China’s Loess Plateau was conducted to reveal the deformation development mechanism and assess the landslide hazards of such fissured loess slopes. First, the hydraulic-mechanical properties of the Q2 loess were investigated through experiments, and the mathematical expressions of the relationships between various mechanical parameters and water content were fitted, indicating that the mechanical parameters, such as cohesion, angle of internal friction, and deformation modulus, vary in a quasi-linear manner with the water content. Then, a new numerical method was proposed to simulate the mechanical behaviours of the loess considering its water sensitivity and transverse isotropy, where the water sensitivity was considered through the implementation of the mathematical expressions of the hydraulic-mechanical relationships, and the transverse isotropy was considered by the modified constitutive model that combined the logics of transversely elastic model and a ubiquitous-joint model. Finally, the deformation development mechanism of the fissured loess slope under rainfall and traffic load was revealed by using the proposed method. The roles of the rainfall and traffic load in the fissure propagation and deformation development process of the slope were explored, and some stabilisation measures are recommended for the prevention of its failure. The proposed method and findings arising therefrom may provide references for future studies of the stability and landslide hazard assessment of fissured loess slopes.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Alireza Ameli ◽  
Rezvan Babagoli

This research intends to evaluate the effects of the waste polyethylene terephthalate (PET), antistripping agents (ASA), and ground tire rubber (GTR) on the performance properties of the stone matrix asphalt (SMA) mix binder/water damage resistance. Liquid antistripping agents, added to 85/100 penetration grade binder to evaluate the ASA effects, were A (M500), B (EvothermM1), and C (LOF-6500). Tests conducted to study the modified bitumen’s rheological properties included softening point, penetration, rotational viscosity (RV), and dynamic shear rheometer (DSR), and tests performed in order to examine the moisture sensitivity of the modified mix were the Texas boiling and resilient modulus (MR), fracture energy (FE), and indirect tensile strength (ITS) ratio tests. Results showed that the MR, ITS, and FE of asphalt mixes modified with crumb rubber (CR), ASA, and PET were improved. Adding 50% PET, 50% CR, and ASA (B) led to the highest tensile strength, resilient modulus, and fracture energy ratios showing a perfect water susceptibility of the mentioned mix.


Sign in / Sign up

Export Citation Format

Share Document