scholarly journals Numerical Study of Heat Transfer of Water Flow through Pipe with Property Variations

2017 ◽  
Vol 4 (4) ◽  
pp. 359-386
Author(s):  
Amjad Ali Pasha ◽  
A. Mushtaq ◽  
Khalid A Juhany
1970 ◽  
Author(s):  
B. A. Zenkevich ◽  
P. L. Kirillov ◽  
G. V. Alekseev ◽  
O. L. Peskov ◽  
O. A. Sudnitsyn

2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Renato P. Coutinho ◽  
Paulo J. Waltrich ◽  
Wesley C. Williams ◽  
Parviz Mehdizadeh ◽  
Stuart Scott ◽  
...  

Abstract Liquid-assisted gas-lift (LAGL) is a recently developed concept to unload wells using a gas–liquid fluid mixture. The success deployment of the LAGL technology is related to the behavior of two-phase flow through gas-lift valves. For this reason, this work presents an experimental and numerical study on two-phase flow through orifice gas-lift valves used in liquid-assisted gas-lift unloading. To the knowledge of the authors, there is no investigation in the literature on experimental characterization of two-phase flow through gas-lift valves. Experimental data are presented for methane-water flow through gas-lift valves with different orifice port sizes: 12.7 and 17.5 mm. The experiments were performed for pressures ranging from 1.00 to 9.00 MPa, gas flow rates from 0 to 4.71 m3/h, and water flow rate from 0 to 0.68 m3/min. The experimental results are compared to numerical models published in the literature for two-phase flow through restrictions and to commercial multiphase flow simulators. It is observed that some models developed for two-phase flow through restrictions could successfully characterize two-phase flow thorough gas-lift valves with errors lower than 10%. However, it is first necessary to experimentally determine the discharge coefficient (CD) for each gas-lift valve. The commercial flow simulators showed a similar performance as the models available in the literature.


2004 ◽  
Vol 46 (10) ◽  
pp. 929-955 ◽  
Author(s):  
A. Haji-Sheikh ◽  
W. J. Minkowycz ◽  
E. M. Sparrow

2013 ◽  
Vol 455 ◽  
pp. 470-473
Author(s):  
Chao Wang ◽  
Shang Long Xu ◽  
Yun Chuan Wu

A study has been conducted on the heat transfer of various oscillatory frequencies of pulsation flow through a porous channel network subjected to a constant wall heat flux. The surface temperature distributions, pressure drop, unit thermal resistance and local Nusselt number for different oscillatory frequencies were mainly investigated.


2019 ◽  
Vol 23 (1) ◽  
pp. 271-279
Author(s):  
Mehmet Pamuk

In this study, heat transfer in unidirectional flow through a porous medium with the fluid phase being water is analyzed using the commercial software Comsol?. The aim of the study is to validate the suitability of this package for similar problems regarding heat transfer calculations in unidirectional flow through porous media. The porous medium used in the study is comprised of steed balls of 3 mm in diameter filled in a pipe of 51.4 mm inner diameter. The superficial velocity range is 3-10 mm/s which correspond to a Reynolds number range of 150-500 for an empty pipe. Heat is applied peripherally on the outer surface of the pipe at a rate of 7.5 kW/m2 using electrical ribbon heaters. The numerical results obtained using the commercial software Comsol? are compared with those obtained in the experiments once conducted by the author of this article. Results have shown that Comsol? can generate reliable results in heat transfer problems through porous media, provided all parameters are selected correctly, thus making it unnecessary to prepare expensive experimental set-ups and spending extensive time to conduct experiments.


1976 ◽  
Vol 98 (3) ◽  
pp. 353-359 ◽  
Author(s):  
W. L. Oberkampf ◽  
L. I. Crow

The fluid dynamic and temperature fields in a reservoir are numerically simulated by means of a finite difference procedure. The flow in the rectangular reservoir is assumed to be two-dimensional in a vertical plane. Inflow is allowed at the surface on one end of the reservoir and outflow occurs at any depth on the opposite end. The reservoir inflow is set at a given temperature and velocity so as to simulate the thermal discharge from a power generating facility. At the surface of the reservoir wind shear, short wave and long wave radiation, evaporation, and convective heat transfer are taken into account. The effects of inflow/outflow, wind shear, and heat transfer on the reservoir are discussed.


Sign in / Sign up

Export Citation Format

Share Document