scholarly journals Emigración de recursos humanos calificados y desarrollo en América Latina y el Caribe: una mirada desde la geografía

2017 ◽  
Vol 11 (22) ◽  
pp. 1
Author(s):  
Eloy Montes Galbán

<p>El presente estudio tiene por objetivo determinar las unidades espaciales (países) que cumplen con cada una de las relaciones establecidas para el nivel bivariado entre la emigración de recursos humanos calificados y desarrollo en América Latina y el Caribe (ALC). La metodología implementada constó de dos fases, en la primera se creó una base de datos geográfica digital, seleccionando y ordenando los indicadores a ser correlacionados como variables independientes (Esperanza de vida al nacer; Ayuda Oficial al Desarrollo neta recibida y el Índice de Globalización) y dependiente (Emigración de recursos humanos calificados), para esto se contó con estadísticas del año 2008; en la segunda fase se aplicó la técnica de Análisis Exploratorio de Datos Espaciales(ESDA, Exploratory Spatial Data Analysis)específicamente procedimientos de análisis bivariado (2D) con el apoyo del software GeoDa. De los resultados del ESDA se deriva: en cuanto a la relación entre el índice de esperanza de vida al nacer y la tasa de emigración calificada en ALC, la tendencia es que a menor índice de esperanza de vida al nacer mayor tasa de emigración calificada (TEC); en cuanto a la relación entre la Ayuda Oficial al Desarrollo con la TEC la correlación es positiva; del resultado de la tercera y última correlación se concluye que a menores niveles en los índices de globalización mayores TEC.Los países con una situación más favorable son: Argentina, Chile, Colombia, Ecuador, Perú, Uruguay, Costa Rica, México y Panamá; asimismo, los que presentan una situación menos favorable son: Surinam, Dominica, Haití, San Cristóbal y Nieves, San Vicente y Granadinas.</p><p> </p>

2014 ◽  
Vol 72 (1) ◽  
Author(s):  
Syerrina Zakaria ◽  
Nuzlinda Abd. Rahman

The objective of this study is to analyze the spatial cluster of crime cases in Peninsular Malaysia by using the exploratory spatial data analysis (ESDA). In order to identify and measure the spatial autocorrelation (cluster), Moran’s I index were measured. Based on the cluster analyses, the hot spot of the violent crime occurrence was mapped. Maps were constructed by overlaying hot spot of violent crime rate for the year 2001, 2005 and 2009. As a result, the hypothesis of spatial randomness was rejected indicating cluster effect existed in the study area. The findings reveal that crime was distributed nonrandomly, suggestive of positive spatial autocorrelation. The findings of this study can be used by the goverment, policy makers or responsible agencies to take any related action in term of crime prevention, human resource allocation and law enforcemant in order to overcome this important issue in the future. 


2016 ◽  
Author(s):  
Daniele Oxoli ◽  
Mayra A Zurbarán ◽  
Stanly Shaji ◽  
Arun K Muthusamy

The growing popularity of Free and Open Source (FOSS) GIS software is without doubts due to the possibility to build and customize geospatial applications to meet specific requirements for any users. From this point of view, QGIS is one of the most flexible as well as fashionable GIS software environment which enables users to develop powerful geospatial applications using Python. Exploiting this feature, we present here a first prototype plugin for QGIS dedicated to Hotspot analysis, one of the techniques included in the Exploratory Spatial Data Analysis (ESDA). These statistics aim to perform analysis of geospatial data when spatial autocorrelation is not neglectable and they are available inside different Python libraries, but still not integrated within the QGIS core functionalities. The main plugin features, including installation requirements and computational procedures, are described together with an example of the possible applications of the Hotspot analysis.


2020 ◽  
Vol 12 (18) ◽  
pp. 7760
Author(s):  
Alfonso Gallego-Valadés ◽  
Francisco Ródenas-Rigla ◽  
Jorge Garcés-Ferrer

Environmental justice has been a relevant object of analysis in recent decades. The generation of patterns in the spatial distribution of urban trees has been a widely addressed issue in the literature. However, the spatial distribution of monumental trees still constitutes an unknown object of study. The aim of this paper was to analyse the spatial distribution of the monumental-tree heritage in the city of Valencia, using Exploratory Spatial Data Analysis (ESDA) methods, in relation to different population groups and to discuss some implications in terms of environmental justice, from the public-policy perspective. The results show that monumental trees are spatially concentrated in high-income neighbourhoods, and this fact represents an indicator of environmental inequality. This diagnosis can provide support for decision-making on this matter.


Sign in / Sign up

Export Citation Format

Share Document