AUTOMATION OF CONTROL PROCESS TO ENSURE TOOL QUALITY DURING FINISHING WITH GLOW DISCHARGE PLASMA

2021 ◽  
Vol 2021 (8) ◽  
pp. 14-21
Author(s):  
Vladimir Logvin ◽  
Tatyana Karlova

Work purpose: the development of conditions for control automation ensuring tool essential qualities at the stage of finishing with glow discharge plasma. Investigation methods: based on the peculiarities of a human mental process the formation of an electronic model of a neural control system on the basis of engineering process monitoring in industry promoted cybernetic method carrying out for the increase of effectiveness and quality control during the management. The formation of an investigation process for computer technology use at the solution of the problem to ensure specified quality at the realization of engineering processes for metal working tool strengthening in the plasma generator of a glow discharge allowed creating an efficient system of control. The creation of conditions for the fulfillment of human cognitive potentialities with the high degree of similarity such as identification, accumulation and dissemination or transfer of information in the form of electromagnetic pulses similar to neural exchange allows optimizing a control system of quality of product strengthening in the plasma generator of a glow discharge. The formulation of a management solution in the form of the chain of commands in the neural network of the control system of the plasma generator of a glow discharge is formed in accordance with phenomena forming output responses and conditions ensuring their formation. Investigation results: for setting an optimum field of investigations and, accordingly, for increasing effectiveness of the automated control system of finishing quality under the glow discharge plasma impact during the whole engineering process the use of unique potentialities of continuous neural network monitoring is intended. The application of the neural network approach and its unique functions at the formation of the control system using the continuous monitoring of basic engineering process parameters of finishing ensuring specified quality of machining steps realized allows ensuring high repeatability at metal working tool strengthening. In the technological system developed all functions of control and management are based on the use of the neural network approach that allows visualizing its functioning on the monitor in the course of the whole engineering finishing process in the form of graphical dependence. Conclusions: 1. The use of unique potentialities of continuous neural network monitoring allows defining a optimum field of investigations at the lowest cost and accordingly increasing quality of the automated system of finishing quality control at the impact of glow discharge plasma. 2. Depending on material of a tool working part and conditions of tool operation in the surface layer there is formed an essential thermo-dynamic structure with the specified physical-mechanical properties that allows ensuring optimum repeatability. 3. The formation of conditions for the fulfillment with a high degree of similarity human cognitive potentialities such as identification, accumulation and dissemination or transfer of information in the form of electro-magnetic pulses similar to neural exchange allows optimizing a system of quality control of tools strengthened at the stage of glow discharge plasma finishing.

Author(s):  
V.A. Logvin ◽  
◽  
S.A. Sheptunov ◽  

The conditions for the hardening of tools in accordance with the author’s technological routes in the optimal time interval are considered using the functional dependence of the serviceability of plasma generators. This dependence takes into account the workability of the technical devices involved in processing the laying batch of tools in the speci ed time interval. The probability of performing the production process in the estimated time is represented by the product of the trouble-free operation of each glow discharge plasma generator involved in the nishing processing of tools that require a different type of plasma exposure in a certain sequence and duration.


2021 ◽  
Vol 2021 (3) ◽  
pp. 16-24
Author(s):  
Vladimir Logvin ◽  
Tatyana Karlova

Work purpose: improving effectiveness and quality in the control of engineering processes of tool working in the plasma generator of a glow discharge based on neural network monitoring. Investigation methods: use of nature and regularities of human thought at the development of the computer model of a neural network allowed realizing a cybernetic approach at real production object work modeling with the purpose of increasing effectiveness and quality of control at the management based on neural network monitoring. The essence of the modeling method consists in the development of such algorithms and programs which imitate the behavior of the plasma generator of a glow discharge, its characteristics in the structure, volume and field of technological parameter use essential for the research. Investigation results: the system offered for the control of effectiveness and quality of realizable engineering processes during plasma generator work based on neural network monitoring allows ensuring good repeatability of the results on tool strengthening. The defined sequence of engineering process operations of product working in the plasma generator of a glow discharge ensures the formation of specified structure and micro-hardness on the surface of products under processing. In the system offered control and management are formed on the basis of a neural network approach and imitate system behavior at all machining steps of processing. The results of continuous monitoring are shown with the essential discontinuity in on-line modes in the form of values and deviations of controlled technological parameters of the working process on the display of an electronic control unit. The generality and simultaneous uniqueness of the properties of continuous monitoring systems on applicability for real technological object control and range extension of problems solved with their help transforms them into compulsory means for complex automated device equipment. The modeling algorithm offered at the formation of an automated system to control effectiveness and quality in functioning plasma generator of a glow discharge for strengthening a wide range of tools with different profiles with machining steps differed in character of plasma impact, duration and their realization priority allowed optimizing the repeatability of results in ensuring specified properties in surface-bounded layers that satisfies conditions of the automated technological environment.


2021 ◽  
Vol 248 ◽  
pp. 01006
Author(s):  
Vladimir A. Logvin ◽  
Ludmila A. Yvarova

A theory has been developed that explains the structure formation in a thin surface layer of a material after low-energy exposure to a glow discharge plasma. This makes it possible to design new methods, technologies and automated devices for the development of an automated technological environment for strengthening various types of tools from various materials. Based on the developed theory, a self-learning system with a developing database was created for monitoring all stages of processing in a glow discharge plasma generator. Any crystal structure can be classified as a complex nonlinear system. When studying the dynamic response of such systems to an external low-energy effect, it was shown that by the time when the nonlinear vibrations stop, the atoms of the crystal lattice are stabilized in new positions. Based on the purpose of the products to be processed in the glow discharge plasma generator, with taking into account their operating conditions, it is possible to increase their production life up to 2 times or more. These technologies should be used at the final stage of the production process because they do not lead to distortion of the shape and size of the working surfaces of products being manufactured. In this case, the residual stresses are redistributed in the surface layer of the material with the formation of an equal structure that improves the running-in conditions of mating parts of devices and mechanisms. For cutting and forming tools, the run-in stage is reduced to the stage of uniform wear.


2011 ◽  
Vol 110-116 ◽  
pp. 4076-4084
Author(s):  
Hai Cun Du

In this paper, we determine the fuzzy control strategy of inverter air conditioner, the fuzzy control model structure, the neural network and fuzzy control technology, structural design of the fuzzy neural network controller as well as the neural network predictor FNNC NNP. Simulation results show that the fuzzy neural network controller can control the accuracy greatly improved the compressor, and the control system has strong adaptability to achieve a truly intelligent; model of the controller design and implementation of technology are mainly from the practical point of view, which is practical and feasible.


2020 ◽  
Vol 1686 ◽  
pp. 012013
Author(s):  
V.N. Arustamov ◽  
R.KH. Ashurov ◽  
V.M. Rotchtein ◽  
KH.B. Ashurov ◽  
I.KH. Khudaykulov

Author(s):  
S. Kh. Ali ◽  
Kh. M. Ali ◽  
E. A. Bezrukov ◽  
S. V. Belov ◽  
Yu. K. Danyleiko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document