On some new sharp embedding theorems in area Nevanlinna spaces and related problems

Author(s):  
Romi Shamoyan
Keyword(s):  

We provide some new sharp embedding theorems for analytic area Nevanlinna spaces in the unit disk extending some previously known assertions in various directions.

2009 ◽  
Vol 52 (4) ◽  
pp. 613-626 ◽  
Author(s):  
Hasi Wulan ◽  
Kehe Zhu

AbstractWe obtain new characterizations for Bergman spaces with standard weights in terms of Lipschitz type conditions in the Euclidean, hyperbolic, and pseudo-hyperbolic metrics. As a consequence, we prove optimal embedding theorems when an analytic function on the unit disk is symmetrically lifted to the bidisk.


2013 ◽  
Vol 3 (2) ◽  
pp. 197-202
Author(s):  
Amir Pishkoo ◽  
Maslina Darus

This paper presents a mathematical model that provides analytic connection between four fundamental forces (interactions), by using modified reciprocal theorem,derived in the paper, as a convenient template. The essential premise of this work is to demonstrate that if we obtain with a form of the Yukawa potential function [as a meromorphic univalent function], we may eventually obtain the Coloumb Potential as a univalent function outside of the unit disk. Finally, we introduce the new problem statement about assigning Meijer's G-functions to Yukawa and Coloumb potentials as an open problem.


Author(s):  
Deepali Khurana ◽  
Sushma Gupta ◽  
Sukhjit Singh

In the present article, we consider a class of univalent harmonic mappings, $\mathcal{C}_{T} = \left\{ T_{c}[f] =\frac{f+czf'}{1+c}+\overline{\frac{f-czf'}{1+c}}; \; c>0\;\right\}$ and $f$ is convex univalent in $\mathbb{D}$, whose functions map the open unit disk $\mathbb{D}$ onto a domain convex in the direction of the imaginary axis. We estimate coefficient, growth and distortion bounds for the functions of the same class.


Author(s):  
D. E. Edmunds ◽  
W. D. Evans

This chapter presents a selection of some of the most important results in the theory of Sobolev spacesn. Special emphasis is placed on embedding theorems and the question as to whether an embedding map is compact or not. Some results concerning the k-set contraction nature of certain embedding maps are given, for both bounded and unbounded space domains: also the approximation numbers of embedding maps are estimated and these estimates used to classify the embeddings.


2020 ◽  
Vol 224 (2) ◽  
pp. 469-506 ◽  
Author(s):  
Pierre-Alain Jacqmin
Keyword(s):  

2020 ◽  
Vol 70 (4) ◽  
pp. 829-838
Author(s):  
Saqib Hussain ◽  
Shahid Khan ◽  
Khalida Inayat Noor ◽  
Mohsan Raza

AbstractIn this paper, we are mainly interested to study the generalization of typically real functions in the unit disk. We study some coefficient inequalities concerning this class of functions. In particular, we find the Zalcman conjecture for generalized typically real functions.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Saiful R. Mondal ◽  
Kottakkaran Sooppy Nisar ◽  
Thabet Abdeljawad

Abstract The article considers several polynomials induced by admissible lower triangular matrices and studies their subordination properties. The concept generalizes the notion of stable functions in the unit disk. Several illustrative examples, including those related to the Cesàro mean, are discussed, and connections are made with earlier works.


2020 ◽  
Vol 26 (1) ◽  
pp. 111-115
Author(s):  
Janusz Sokół ◽  
Katarzyna Trabka-Wiȩcław

AbstractThis paper considers the following problem: for what value r, {r<1} a function that is univalent in the unit disk {|z|<1} and convex in the disk {|z|<r} becomes starlike in {|z|<1}. The number r is called the radius of convexity sufficient for starlikeness in the class of univalent functions. Several related problems are also considered.


Author(s):  
Oona Rainio ◽  
Matti Vuorinen

Sign in / Sign up

Export Citation Format

Share Document