The Emerging of Stress Triaxiality and Lode Angle in Both Solid and Damage Mechanics: A Review

2021 ◽  
Vol 56 (5) ◽  
pp. 787-806
Author(s):  
Mohammed Algarni ◽  
Sami Ghazali ◽  
Mohammed Zwawi
Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1627
Author(s):  
Jian Peng ◽  
Peishuang Zhou ◽  
Ying Wang ◽  
Qiao Dai ◽  
David Knowles ◽  
...  

The stress state has an important effect on the deformation and failure of metals. While the stress states of the axisymmetric notched bars specimens are studied in the literature, the studies on the flat metal specimen with inclined notch are very limited and the stress state is not clearly characterized in them. In this paper, digital image correlation and finite element simulations are used to study the distribution of strain and stress state, that is stress triaxiality and Lode angle parameter. Flat specimen with inclined notch was tested to extract the full field strain evolution and calculate stress state parameters at three locations: specimen centre, notch root and failure starting point. It is found that compared with the centre point and the notch root, the failure initiation point can better characterize the influence of the notch angle on the strain evolution. Conversely, the centre point can more clearly characterize the effect of the notch angle on stress state, since the stress states at the failure point and the notch root change greatly during the plastic deformation. Then the calculated stress state parameters of the flat metal specimen with inclined notch at the centre point are used in Wierzbicki stress state diagram to establish a relationship between failure mode and stress state.


2020 ◽  
Vol 43 (8) ◽  
pp. 1755-1768 ◽  
Author(s):  
Nicola Bonora ◽  
Gabriel Testa ◽  
Andrew Ruggiero ◽  
Gianluca Iannitti ◽  
Domenico Gentile

2020 ◽  
pp. 105678952095804
Author(s):  
Kai Zhang ◽  
Houssem Badreddine ◽  
Naila Hfaiedh ◽  
Khemais Saanouni ◽  
Jianlin Liu

This paper deals with the prediction of ductile damage based on CDM approach fully coupled with advanced elastoplastic constitutive equations. This fully coupled damage model is developed based on the total energy equivalence assumption under the thermodynamics of irreversible processes framework with state variables. In this model, the damage evolution is enhanced by accounting for both stress triaxiality and Lode angle. The proposed constitutive equations are implemented into Finite Element (FE) code ABAQUS/Explicit through a user material subroutine (VUMAT). The material parameters are determined by the hybrid experimental-numerical method using various tensile and shear tests. Validation of the proposed model has been done using different tests of two aluminum alloys (Al6061-T6 and Al6014-T4). Through comparisons of numerical simulations with experimental results for different loading paths, the predictive capabilities of the proposed model have been shown. The model is found to be able to capture the initiation as well as propagation of macro-crack in sheet and bulk metals during their forming processes.


Author(s):  
Yuanli Bai ◽  
Xiaoqing Teng ◽  
Tomasz Wierzbicki

Theoretical and experimental studies have shown that stress triaxiality is the key parameter controlling the magnitude of the fracture strain. Smooth and notched round bar specimens are mostly often used to quantify the effect of stress triaxiality on ductile fracture strain. There is a mounting evidence (Bai and Wierzbicki, 2008, “A New Model of Metal Plasticity and Fracture With Pressure and Lode Dependence,” Int. J. Plast., 24(6), pp. 1071–1096) that, in addition to the stress triaxiality, the normalized third deviatoric stress invariant (equivalent to the Lode angle parameter) should also be included in characterization of ductile fracture. The calibration using round notched bars covers only a small range of possible stress states. Plane strain fracture tests provide additional important data. Following Bridgman’s stress analysis inside the necking of a plane strain specimen, a closed-form solution is derived for the stress triaxiality inside the notch of a flat-grooved plane strain specimen. The newly derived formula is verified by finite element simulations. The range of stress triaxiality in round notched bars and flat-grooved specimens is similar, but the values of the Lode angle parameter are different. These two groups of tests are therefore very useful in constructing a general 3D fracture locus. The results of experiments and numerical simulations on 1045 and DH36 steels have proved the applicability of the closed-form solution and have demonstrated the effect of the Lode angle parameter on the fracture locus.


Sign in / Sign up

Export Citation Format

Share Document