Thermogravimetric analysis of the parameters of foundry coke and anthracite

2015 ◽  
Vol 45 (11) ◽  
pp. 844-851 ◽  
Author(s):  
A. V. Feoktistov ◽  
N. F. Yakushevich ◽  
V. M. Strakhov ◽  
I. F. Selyanin ◽  
O. G. Modzelevskaya
2013 ◽  
Vol 51 (2) ◽  
pp. 137-144
Author(s):  
Naesung Lee ◽  
Jeung Choon Goak ◽  
Tae Yang Kim ◽  
Jongwan Jung ◽  
Young-Soo Seo ◽  
...  

2016 ◽  
Vol 10 (4) ◽  
pp. 465-472 ◽  
Author(s):  
Debora Almeida ◽  
◽  
Maria de Fatima Marques ◽  

In the present work, the pyrolysis of polypropylene and polyethylene was evaluated with and without the addition of niobium oxide as catalyst by means of thermogravimetric analysis and experiments in a glass reactor. The results revealed that niobium oxide performed well in the pyrolysis of both polypropylene and polyethylene separately. For the mixture of polypropylene with polyethylene, the catalyst reduced the pyrolysis time.


2019 ◽  
Author(s):  
Andreas Boelke ◽  
Yulia A. Vlasenko ◽  
Mekhman S. Yusubov ◽  
Boris Nachtsheim ◽  
Pavel Postnikov

<p>The thermal stability of pseudocyclic and cyclic <i>N</i>-heterocycle-stabilized (hydroxy)aryl- and mesityl(aryl)-l<sup>3</sup>-iodanes (NHIs) through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) is investigated. NHIs bearing <i>N</i>-heterocycles with a high N/C-ratio such as triazoles show among the lowest descomposition temperatures and the highest decomposition energies. A comparison of NHIs with known (pseudo)cyclic benziodoxolones is made and we further correlated their thermal stability with reactivity in a model oxygenation. </p>


Author(s):  
Diogo Nunes ◽  
Gretta Larisa Aurora Arce Ferrufino ◽  
Ivonete Ávila

2020 ◽  
Vol 70 (12) ◽  
pp. 4594-4600

The purpose of this study was to characterize some types of biomass wastes resulted from different activities such as: agriculture, forestry and food industry using thermogravimetric and ICP-MS analyses. Also, it was optimized an ICP-MS method for the determination of As, Cd and Pb from biomass ash samples. The ICP-MS analysis revealed that the highest concentration of metals (As, Cd, Pb) was recorded in the wood waste ash sample, also the thermogravimetric analysis indicated that the highest amount of ash was obtained for the same sample (26.82%). The biomass wastes mentioned in this study are alternative recyclable materials, reusable as pellets and briquettes. Keywords: ash, biomass, ICP-MS, minor elements, TG


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 127 ◽  
Author(s):  
Yu Sun ◽  
Yazhen Wang ◽  
Li Liu ◽  
Tianyuan Xiao

A 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) acrylate, (6-oxidodibenzo [c,e][1,2] oxaphosphinin-6-yl) methyl acrylate (DOPOAA), has been prepared. Copolymers of styrene (St) and DOPOAA were prepared by emulsion polymerization. The chemical structures of copolymers containing levels of DOPOAA were verified using Fourier transform infrared (FT-IR) spectroscopy and 1H nuclear magnetic resonance (1H-NMR) spectroscopy. The thermal properties and flame-retardant behaviors of DOPO-containing monomers and copolymers were observed using thermogravimetric analysis and micro calorimetry tests. From thermogravimetric analysis (TGA), it was found out that the T5% for decomposition of the copolymer was lower than that of polystyrene (PS), but the residue at 700 °C was higher than that of PS. The results from micro calorimetry (MCC) tests indicated that the rate for the heat release of the copolymer combustion was lower than that for PS. The limiting oxygen index (LOI) for combustion of the copolymer rose with increasing levels of DOPOAA. These data indicate that copolymerization of the phosphorus-containing flame-retardant monomer, DOPOAA, into a PS segment can effectively improve the thermal stability and flame retardancy of the copolymer.


Sign in / Sign up

Export Citation Format

Share Document