Removal of Antimony Metalloid From Synthetic Effluent Using Seaweed as a Low-Cost Natural Sorbent: Adsorption on a Fixed-Bed Column

2019 ◽  
Vol 41 (1) ◽  
pp. 21-28
Author(s):  
Reza Dabbagh ◽  
Maryam-sadat Mirkamali ◽  
Leila Vafajoo
2018 ◽  
Vol 96 (7) ◽  
pp. 1468-1478 ◽  
Author(s):  
Natália Cândido Homem ◽  
Angélica Marquetotti Salcedo Vieira ◽  
Rosângela Bergamasco ◽  
Marcelo Fernandes Vieira

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Bo Bai ◽  
Xiaohui Xu ◽  
Changchuan Li ◽  
Jianyu Xing ◽  
Honglun Wang ◽  
...  

The adsorptive removal of antibiotics from aqueous solutions is recognized as the most suitable approach due to its easy operation, low cost, nontoxic properties, and high efficiency. However, the conventional regeneration of saturated adsorbents is an expensive and time-consuming process in practical wastewater treatment. Herein, a scalable adsorbent of magnetic Fe3O4@chitosan carbon microbeads (MCM) was successfully prepared by embedding Fe3O4 nanoparticles into chitosan hydrogel via an alkali gelation-thermal cracking process. The application of MCM composites for the adsorptive removal of doxycycline (DC) was evaluated using a fixed-bed column. The results showed that pH, initial concentration, flow rate, and bed depth are found to be important factors to control the adsorption capacity of DC. The Thomas and Yoon-Nelson models showed a good agreement with the experimental data and could be applied for the prediction of the fixed-bed column properties and breakthrough curves. More importantly, the saturated fixed bed can be easily recycled by H2O2 which shows excellent reusability for the removal of doxycycline. Thus, the combination of the adsorption advantage of chitosan carbon with catalytic properties of magnetic Fe3O4 nanoparticles might provide a new tool for addressing water treatment challenges.


2015 ◽  
Vol 1 (2) ◽  
pp. 244-250 ◽  
Author(s):  
R. Lakshmipathy ◽  
N. C. Sarada

The present study reports the feasibility of removing Pb2+ ions from aqueous solution using watermelon rind (WR) as a low cost adsorbent.


Author(s):  
P. Sáez ◽  
A. Rodríguez ◽  
J. M. Gómez ◽  
C. Paramio ◽  
C. Fraile ◽  
...  

AbstractIn this paper, the gallium (III) ions’ adsorption onto protonated clinoptilolite (H-CLP) was investigated both in batch and fixed-bed column experiments. Regarding batch experiments, the influence of some parameters such as adsorbent dosage, size particle, and temperature was studied, determining that a dosage of 10 g/L for an initial pollutant concentration of 40 mg/L leads to a removal percentage over 85% regardless of particle size and temperature. On the other hand, adsorption of gallium onto H-CPL is an endothermic and spontaneous process in the studied temperature range, concluding that the maximum adsorption capacity was 16 mg/g for 60 °C. Concerning to the effect of the presence of other cations in solution, such as Na+, K+, or Ca2+, gallium adsorption capacity only drops by 20%, although the initial concentration of other cations in the solution is 50 times higher than gallium concentration. This means that clinoptilolite has a high affinity for gallium which can be very favorable for further selectivity tests. A crucial factor for this high selectivity could be the protonation of clinoptilolite which allows working without modifying the pH of the aqueous solution with acid. In the fixed-bed experiments, breakthrough curves were obtained, and the effect of operation variables was determined. A breakpoint value of 254 min for 64 g of adsorbent and flow rate of 9.0 mL/min (7.0 BV/h) were obtained, when treating a pollutant volume of 33 BV. Additionally, the breakthrough curves were fitted to different models to study the particle size effect, being the best fit corresponding to the Adams–Bohart model. This fact confirmed the influence of particle size on adsorption kinetics. Graphical Abstract


2013 ◽  
Vol 68 (10) ◽  
pp. 2158-2163 ◽  
Author(s):  
Shenglong Zhang ◽  
Randi Zhang ◽  
Wei Xiao ◽  
Runping Han

Natural peanut husk (NPH) modified with hexadecyl trimethyl ammonium bromide (CTAB) was used as adsorbent to remove 2,5-dimethoxy-4-chloroaniline (DMCH) from solution in a fixed-bed column. Fourier transform infrared spectroscopy analysis and X-ray fluorescence of NPH and modified peanut husk (MPH) showed that CTAB had been introduced onto the surface of NPH. The effects of flow rate and bed depth on breakthrough curves were studied. The Thomas model and the Yan model were selected to fit the column adsorption data and the results showed that the Yan model was better at predicting the breakthrough curves. The adsorption quantity was up to 6.46 mg/g according to the Yan model. The bed depth service time model was used to calculate the critical bed depth from experimental data and it was directly related to flow rate. As a low-cost adsorbent, MPH is promising for the removal of DMCH from solution.


2010 ◽  
Vol 658 ◽  
pp. 53-56
Author(s):  
Zai Fang Deng ◽  
Xue Gang Luo ◽  
Xiao Yan Lin

The performance of low-cost adsorbent such as rice husk fixed bed column in removing copper from aqueous solution were studied in this work. Different column design parameters like bed height, flow rate and initial concentration were calculated. It was found that at 10 mg/L concentration of Cu (Ⅱ) and at flow rate 5 mL/min with different bed depths such as 9, 12 and 15 cm, the breakthrough time increases from 150 to 260 min; the breakthrough time increases from 125 to 780 min with decreasing of flow rate from 15 to 5 mL/min and decreased from 260 to 50 min when initial concentration increased from 7 to 50 mg/L.


2020 ◽  
Vol 191 ◽  
pp. 400-416
Author(s):  
Amina Lahmar ◽  
Zhour Hattab ◽  
Radia Zerdoum ◽  
Amina Berredjem ◽  
Ridha Djellabi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document