Adsorption of chloro-anilines from solution by modified peanut husk in fixed-bed column

2013 ◽  
Vol 68 (10) ◽  
pp. 2158-2163 ◽  
Author(s):  
Shenglong Zhang ◽  
Randi Zhang ◽  
Wei Xiao ◽  
Runping Han

Natural peanut husk (NPH) modified with hexadecyl trimethyl ammonium bromide (CTAB) was used as adsorbent to remove 2,5-dimethoxy-4-chloroaniline (DMCH) from solution in a fixed-bed column. Fourier transform infrared spectroscopy analysis and X-ray fluorescence of NPH and modified peanut husk (MPH) showed that CTAB had been introduced onto the surface of NPH. The effects of flow rate and bed depth on breakthrough curves were studied. The Thomas model and the Yan model were selected to fit the column adsorption data and the results showed that the Yan model was better at predicting the breakthrough curves. The adsorption quantity was up to 6.46 mg/g according to the Yan model. The bed depth service time model was used to calculate the critical bed depth from experimental data and it was directly related to flow rate. As a low-cost adsorbent, MPH is promising for the removal of DMCH from solution.

2021 ◽  
Vol 24 (1) ◽  
pp. 1-7
Author(s):  
Alaa Taha ◽  
Khalid M. Mousa

The intention of this study was to explore the efficiency and feasibility of adsorption of Reactive Blue dye (H3R) used in textile industries using Raw wheat straw (RWS) and Modified wheat straw (MWS) as a low-cost adsorbent. Wheat straw was modified using cationic surfactant (CTAB) to study the improvement of dye removal. The properties of Raw and Modified wheat straw are studied by means of Fourier transform infrared (FTIR) and scanning electron microscope (SEM) analyses to determine the functional groups and the nature of their surface. Continuous experiments were done by fixed-bed column to study the characteristics of the breakthrough curve using different bed heights and flow rates. Results showed that the breakthrough time increases with increasing bed height and decreasing flow rate, in turn results into higher removal capacity. Results also showed a higher flow rate lead a lower adsorption capacity due to insufficient residence time. Bed depth service time model (BDST), Adam-Bohart and Thomas models were used to predict the breakthrough curves and to determine the adsorption capacity of the column. The highest bed capacity of 12.95 and 32.2 mg/g for MWS was obtained using 10 mg/L, 10 cm bed height at 10 mL/min and 30 mL/min respectively.


2018 ◽  
Vol 8 (11) ◽  
pp. 2221 ◽  
Author(s):  
Olga Długosz ◽  
Marcin Banach

Vermiculite has been used for the removal of Cu 2 + and Ag + from aqueous solutions in a fixed-bed column system. The effects of initial silver and copper ion concentrations, flow rate, and bed height of the adsorbent in a fixed-bed column system were investigated. Statistical analysis confirmed that breakthrough curves depended on all three factors. The highest inlet metal cation concentration (5000 mg/dm3), the lowest bed height (3 cm) and the lowest flow rate (2 and 3 cm3/min for Ag + and Cu 2 + , respectively) were optimal for the adsorption process. The maximum total percentage of metal ions removed was 60.4% and 68.7% for Ag+ and Cu2+, respectively. Adsorption data were fitted with four fixed-bed adsorption models, namely Clark, Bohart–Adams, Yoon–Nelson and Thomas models, to predict breakthrough curves and to determine the characteristic column parameters. The adsorbent was characterized by SEM, FTIR, EDS and BET techniques. The results showed that vermiculite could be applied as a cost-effective sorbent for the removal of Cu 2 + and Ag + from wastewater in a continuous process.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Bo Bai ◽  
Xiaohui Xu ◽  
Changchuan Li ◽  
Jianyu Xing ◽  
Honglun Wang ◽  
...  

The adsorptive removal of antibiotics from aqueous solutions is recognized as the most suitable approach due to its easy operation, low cost, nontoxic properties, and high efficiency. However, the conventional regeneration of saturated adsorbents is an expensive and time-consuming process in practical wastewater treatment. Herein, a scalable adsorbent of magnetic Fe3O4@chitosan carbon microbeads (MCM) was successfully prepared by embedding Fe3O4 nanoparticles into chitosan hydrogel via an alkali gelation-thermal cracking process. The application of MCM composites for the adsorptive removal of doxycycline (DC) was evaluated using a fixed-bed column. The results showed that pH, initial concentration, flow rate, and bed depth are found to be important factors to control the adsorption capacity of DC. The Thomas and Yoon-Nelson models showed a good agreement with the experimental data and could be applied for the prediction of the fixed-bed column properties and breakthrough curves. More importantly, the saturated fixed bed can be easily recycled by H2O2 which shows excellent reusability for the removal of doxycycline. Thus, the combination of the adsorption advantage of chitosan carbon with catalytic properties of magnetic Fe3O4 nanoparticles might provide a new tool for addressing water treatment challenges.


2011 ◽  
Vol 287-290 ◽  
pp. 1620-1625
Author(s):  
Yan Wu ◽  
Zai Fang Deng ◽  
Yang Tao ◽  
Xue Gang Luo

Fixed-bed column studies for the removal of Ag(Ⅰ) and Cr(Ⅲ) from individual aqueous solutions using puffed rice husk were investigated in this work. The experiments were conducted to study the effect of important column parameters such as bed height, feed flow rate and feed initial concentration of solution. It was found that increasing bed depth yielded longer service time while increase in influent concentration and flow rate resulted in faster breakthrough. Bed Depth Service Time (BDST) model was applied to analyze the experimental data and the model parameters were evaluated. Good agreement of the experimental breakthrough curves with the model predictions was observed.


2017 ◽  
Vol 36 (1-2) ◽  
pp. 215-232 ◽  
Author(s):  
Jaime López-Cervantes ◽  
Dalia I Sánchez-Machado ◽  
Reyna G Sánchez-Duarte ◽  
Ma A Correa-Murrieta

A continuous adsorption study in a fixed-bed column was carried out using a chitosan–glutaraldehyde biosorbent for the removal of the textile dye Direct Blue 71 from an aqueous solution. The biosorbent was prepared from shrimp shells and characterized by scanning electron microscopy, X-ray diffraction, and nuclear magnetic resonance spectroscopy. The effects of chitosan–glutaraldehyde bed height (3–12 cm), inlet Direct Blue 71 concentration (15–50 mg l−1), and feed flow rate (1–3 ml min−1) on the column performance were analyzed. The highest bed capacity of 343.59 mg Direct Blue 71 per gram of chitosan–glutaraldehyde adsorbent was obtained using 1 ml min−1 flow rate, 50 mg l−1 inlet Direct Blue 71 concentration, and 3 cm bed height. The breakthrough curve was analyzed using the Adams–Bohart, Thomas, and bed depth service time mathematical models. The behaviors of the breakthrough curves were defined by the Thomas model at different conditions. The bed depth service time model showed good agreement with the experimental data, and the high values of correlation coefficients (R2 ≥ 0.9646) obtained indicate the validity of the bed depth service time model for the present column system.


2019 ◽  
Vol 19 (2) ◽  
pp. 486 ◽  
Author(s):  
Nguyen Thi Thuong ◽  
Nguyen Thi Tuyet Nhi ◽  
Vo Thi Cam Nhung ◽  
Hoang Ngoc Bich ◽  
Bui Thi Phuong Quynh ◽  
...  

A number of harmful effects on the ecosystem, the life of humankind, and living species caused by dye-contaminated wastewater have urged the development for an efficient and cost-efficient treatment method for colored effluents. The cellulose-based adsorbents have been considered as a facile and efficient approach to remove hazardous pollutants because of the abundance of inexpensive agricultural wastes in Viet Nam. This study aims to investigate the elimination of methylene blue (MB) and crystal violet (VL) from wastewater using a fixed-bed column of pre-treated durian peel. Examined variables in the process are bed depths (2–6 cm), flow rate (5–20 mL/min), and influent dye concentrations (200–600 mg/L). The highest adsorption amount of pre-treated DP was 235.80 mg/g and 527.64 mg/g, respectively, on a 600 mg/L of methylene blue and crystal violet achieved within a bed height of 4 cm and a flow rate of 10 mL/min. Accordingly, the breakthrough curves were constructed and modeled using the relevant theoretical models under the effects of different experimental conditions. Pre-treated durian peel was found to exhibit high adsorption capacity for cationic dye in an initial concentration of 200–600 mg/L with complete removal being obtained.


Author(s):  
P. Sáez ◽  
A. Rodríguez ◽  
J. M. Gómez ◽  
C. Paramio ◽  
C. Fraile ◽  
...  

AbstractIn this paper, the gallium (III) ions’ adsorption onto protonated clinoptilolite (H-CLP) was investigated both in batch and fixed-bed column experiments. Regarding batch experiments, the influence of some parameters such as adsorbent dosage, size particle, and temperature was studied, determining that a dosage of 10 g/L for an initial pollutant concentration of 40 mg/L leads to a removal percentage over 85% regardless of particle size and temperature. On the other hand, adsorption of gallium onto H-CPL is an endothermic and spontaneous process in the studied temperature range, concluding that the maximum adsorption capacity was 16 mg/g for 60 °C. Concerning to the effect of the presence of other cations in solution, such as Na+, K+, or Ca2+, gallium adsorption capacity only drops by 20%, although the initial concentration of other cations in the solution is 50 times higher than gallium concentration. This means that clinoptilolite has a high affinity for gallium which can be very favorable for further selectivity tests. A crucial factor for this high selectivity could be the protonation of clinoptilolite which allows working without modifying the pH of the aqueous solution with acid. In the fixed-bed experiments, breakthrough curves were obtained, and the effect of operation variables was determined. A breakpoint value of 254 min for 64 g of adsorbent and flow rate of 9.0 mL/min (7.0 BV/h) were obtained, when treating a pollutant volume of 33 BV. Additionally, the breakthrough curves were fitted to different models to study the particle size effect, being the best fit corresponding to the Adams–Bohart model. This fact confirmed the influence of particle size on adsorption kinetics. Graphical Abstract


Author(s):  
Kibrewossen Tesfagiorgis ◽  
Abel E. Navarro ◽  
Bow Ming Chen ◽  
Nicholas Herrera ◽  
Joel Hernandez ◽  
...  

Abstract The objective of this study is to model the breakthrough adsorption curves of Co (II) ions using spent tealeaves in fixed-bed column experiments. Spent leaves of green tea (GT), peppermint tea (PM) and chamomile (CM) were packed in glass columns with a diameter of 2 cm and height of 15 cm, and used as filters for the removal of the pollutant. Aqueous solutions of Cobalt (II) ions (100 mg/L) at pH 6 were prepared and pumped against gravity through the columns at a uniform flow rate of 5 mL/min. Breakthrough curves were fitted for the residual concentration data using the Thomas, Yoon-Nelson, and Clark models, with added empirical terms to delineate the lower tail of the breakthrough curve. These mathematical models were successfully linearized using the natural logarithm for parameter estimation. The results reveal that the Co (II) adsorption fits all three models for all the adsorbents. The Thomas model indicated that the calculated adsorption capacities followed the trend: PM > GT > CM with values of 59.7, 25.2, and 24.9 mg/g respectively. Moreover, CM showed the highest adsorption rates with all the mathematical models, whereas Yoon-Nelson theory provided evidence that PM has the longest 50% adsorption breakthrough among the adsorbents. Lastly, morphological and textural studies indicate that all spent leaves are good candidates as adsorbents due to their high surface heterogeneity. This study proposes the use of spent tealeaves as Co (II) adsorbents because they are inexpensive and environmentally beneficial.


2010 ◽  
Vol 658 ◽  
pp. 53-56
Author(s):  
Zai Fang Deng ◽  
Xue Gang Luo ◽  
Xiao Yan Lin

The performance of low-cost adsorbent such as rice husk fixed bed column in removing copper from aqueous solution were studied in this work. Different column design parameters like bed height, flow rate and initial concentration were calculated. It was found that at 10 mg/L concentration of Cu (Ⅱ) and at flow rate 5 mL/min with different bed depths such as 9, 12 and 15 cm, the breakthrough time increases from 150 to 260 min; the breakthrough time increases from 125 to 780 min with decreasing of flow rate from 15 to 5 mL/min and decreased from 260 to 50 min when initial concentration increased from 7 to 50 mg/L.


Sign in / Sign up

Export Citation Format

Share Document