Agricultural management practices: Effects on soil properties, root growth and sesame yield

2016 ◽  
Vol 42 (5) ◽  
pp. 321-327 ◽  
Author(s):  
Andréa Fernandes Rodrigues ◽  
Tancredo Augusto Feitosa de Souza ◽  
Luciano Façanha Marques ◽  
Jacob Silva Souto ◽  
Wilton Pereira da Silva
Land ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 8
Author(s):  
Rok Mihelič ◽  
Jure Pečnik ◽  
Matjaž Glavan ◽  
Marina Pintar

Maintaining good soil quality is crucial for the sustainability of agriculture. This study aimed to evaluate the effectiveness of the visual soil assessment (VSA) method by testing it on two soil types and two agricultural management practices (AMP) (organic and integrated) that are considered to protect soil quality. We selected two farms with plots on two river terraces with different soil properties. The test was based on the modified method Annual Crops Visual Quality Assessment developed by the Food and Agriculture Organization of the United Nations and supported by a standardized soil physical and chemical analysis. This study showed that the assessed score is highly dependent on the type of farming practice and how soils are managed. The soil type also plays an important role. The results for Calcaric Fluvisol showed that the effects of selected agricultural management practices on the visual assessment of soil quality could be almost undetectable. The time of assessment also plays a significant role in VSA scoring. Different crops and agricultural activities with significant impacts on the soil occur throughout the year (especially in vegetable production). It was observed that a higher score for the soil cover indicator had a beneficial effect on the total VSA rating.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 539 ◽  
Author(s):  
R. Michael Lehman ◽  
Shannon L. Osborne ◽  
Kimberly McGraw

Linking agricultural management tactics to quantifiable changes in soil health-related properties is a key objective for increasing adoption of the most favorable management practices. We used two long-term, no-till cropping studies to illustrate the variable patterns of response of soil structure indices and microbial activity to additional management tactics, including crop rotational diversity, residue management and cover cropping. We found that observable effects of management tactics on soil properties were often dependent on the current crop phase sampled, even though the treatments were well-established. In some cases, a single additional management tactic produced a response, two tactics each produced a response and sometimes there were interactions between tactics. However, importantly, we never observed a negative effect for any of the response variables when stacking soil health building practices in no-till cropping systems. The collective results from the two field studies illustrate that soil health improvements with stacking management tactics are not always simply additive and are affected by temporal relationships inherent to the treatments. We conclude that the implementation of multiple positive management tactics increases the likelihood that improvements in soil properties can be documented with one or more of the proxy measures for soil health.


2021 ◽  
Author(s):  
Yu-Pei Chen ◽  
Chai-Fang Tsai ◽  
PD Rekha ◽  
Sudeep Ghate ◽  
Hsi-Yuan Huang ◽  
...  

Abstract Background The soil quality and health of the tea plantations are dependent on the agriculture management practices, and long-term chemical fertilizer use is implicated in soil decline. Hence, several sustainable practices are used to improve and maintain the soil quality. Here, in this study, changes in soil properties, enzymatic activity, and dysbiosis in bacterial community composition were compared using three agricultural management practices, namely conventional (CA), sustainable (SA) and transformational agriculture (TA) in the tea plantation during 2016 and 2017 period. Soil samples at two-months intervals were collected and analyzed. Results The results of the enzyme activities revealed that acid phosphatase, arylsulfatase, β-glucosidase, and urease activities differed considerably among the soils representing the three management practices. Combining the redundancy and multiple regression analysis, the change in the arylsulfatase activity was explained by soil pH as a significant predictor in the SA soils. The soil bacterial community was predominated by the phyla Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, and Bacteroidetes in the soil throughout the sampling period. Higher Alpha diversity scores indicated increased bacterial abundance and diversity in the SA soils. A significant relationship between bacterial richness indices (SOBS, Chao and ACE) and soil pH, K and P was observed in the SA soils. The diversity indices namely Shannon and Simpson also showed variations, suggesting the shift in the diversity of less abundant and more common species. Furthermore, the agricultural management practices, soil pH fluctuation and the extractable elements had a greater influence on bacterial structure than that of temporal change. Conclusions Based on the cross-over analysis of bacterial composition, enzymatic activity and the soil properties, the relationship between bacterial composition and biologically-driven ecological processes can identified as indicators of sustainability for the tea plantation.


2021 ◽  
Vol 62 (1) ◽  
Author(s):  
Yu-Pei Chen ◽  
Chia-Fang Tsai ◽  
P. D. Rekha ◽  
Sudeep D. Ghate ◽  
Hsi-Yuan Huang ◽  
...  

Abstract Background The soil quality and health of the tea plantations are dependent on agriculture management practices, and long-term chemical fertilizer use is implicated in soil decline. Hence, several sustainable practices are used to improve and maintain the soil quality. Here, in this study, changes in soil properties, enzymatic activity, and dysbiosis in bacterial community composition were compared using three agricultural management practices, namely conventional (CA), sustainable (SA), and transformational agriculture (TA) in the tea plantation during 2016 and 2017 period. Soil samples at two-months intervals were collected and analyzed. Results The results of the enzyme activities revealed that acid phosphatase, arylsulfatase, β-glucosidase, and urease activities differed considerably among the soils representing the three management practices. Combining the redundancy and multiple regression analysis, the change in the arylsulfatase activity was explained by soil pH as a significant predictor in the SA soils. The soil bacterial community was predominated by the phyla Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, and Bacteroidetes in the soil throughout the sampling period. Higher Alpha diversity scores indicated increased bacterial abundance and diversity in the SA soils. A significant relationship between bacterial richness indices (SOBS, Chao and ACE) and soil pH, K and, P was observed in the SA soils. The diversity indices namely Shannon and Simpson also showed variations, suggesting the shift in the diversity of less abundant and more common species. Furthermore, the agricultural management practices, soil pH fluctuation, and the extractable elements had a greater influence on bacterial structure than that of temporal change. Conclusions Based on the cross-over analysis of the bacterial composition, enzymatic activity, and soil properties, the relationship between bacterial composition and biologically-driven ecological processes can be identified as indicators of sustainability for the tea plantation.


2001 ◽  
Vol 81 (4) ◽  
pp. 439-447 ◽  
Author(s):  
G. Manning ◽  
L G Fuller ◽  
R G Eilers ◽  
I. Florinsky

As soil properties influence productivity, it is of interest to characterize their distribution for the purpose of intensified agricultural management in variable landscapes. Soil properties (soil organic C content, soil pH, A horizon thickness, solum thickness and depth to carbonates) were studied in 10 intensively sampled transects in a gently undulating glacial till landscape near Miniota, Manitoba. Using a landform description model, the study site was delineated into upper, mid and lower elevation landform element complexes (LEC). The program used a digital elevation model created from relative elevation data collected on a 10-m grid. Sample points were also stratified by soil series; Newdale (Orthic Black Chernozem), Varcoe (Gleyed Rego Black Chernozem) and Angusville (Gleyed Eluviated Black Chernozem) soils of the Newdale association were identified. Landform element complexes were ranked lower > mid > upper with respect to convergent landscape character. The eluviated Angusville profiles occurred under more convergent landscape character than the Newdale or Varcoe series. There was a consistent rank of lower > mid > upper with respect to depth to carbonates, A horizon thickness, solum thickness and soil organic C content. Relative ranking of the pH in the Ap horizon was the opposite. In all cases, the lower LEC emerged as most clearly distinct. There was substantial variability in soil profile development, and, therefore, soil series membership, within individual LEC. This indicated that the scale at which LEC are delineated is broader than that at which soil series variability occurs. Nonetheless, LEC were useful in capturing gross variability in soil properties within the landscape at a scale that would allow unique agricultural management practices. Key words: Soil-landscape, solum thickness, depth to carbonates, organic carbon, soil pH


2007 ◽  
Vol 43 ◽  
pp. S171-S175 ◽  
Author(s):  
Rod P. Blackshaw ◽  
Sarah E. Donovan ◽  
Samarendra Hazarika ◽  
Roland Bol ◽  
Elizabeth R. Dixon

Soil Research ◽  
2019 ◽  
Vol 57 (2) ◽  
pp. 200 ◽  
Author(s):  
J. Somasundaram ◽  
M. Salikram ◽  
N. K. Sinha ◽  
M. Mohanty ◽  
R. S. Chaudhary ◽  
...  

Conservation agriculture (CA) including reduced or no-tillage and crop residue retention, is known to be a self–sustainable system as well as an alternative to residue burning. The present study evaluated the effect of reduced tillage coupled with residue retention under different cropping systems on soil properties and crop yields in a Vertisol of a semiarid region of central India. Two tillage systems – conventional tillage (CT) with residue removed, and reduced tillage (RT) with residue retained – and six major cropping systems of this region were examined after 3 years of experimentation. Results demonstrated that soil moisture content, mean weight diameter, percent water stable aggregates (>0.25mm) for the 0–15cm soil layer were significantly (Pmoderately labile>less labile. At the 0–15cm depth, the contributions of moderately labile, less labile and non-labile C fractions to total organic C were 39.3%, 10.3% and 50.4% respectively in RT and corresponding values for CT were 38.9%, 11.7% and 49.4%. Significant differences in different C fractions were observed between RT and CT. Soil microbial biomass C concentration was significantly higher in RT than CT at 0–15cm depth. The maize–chickpea cropping system had significantly (P–1 followed by soybean+pigeon pea (2:1) intercropping (3.50 t ha–1) and soybean–wheat cropping systems (2.97 t ha–1). Thus, CA practices could be sustainable management practices for improving soil health and crop yields of rainfed Vertisols in these semiarid regions.


Sign in / Sign up

Export Citation Format

Share Document