Topographic influence on the variability of soil properties within an undulating Manitoba landscape

2001 ◽  
Vol 81 (4) ◽  
pp. 439-447 ◽  
Author(s):  
G. Manning ◽  
L G Fuller ◽  
R G Eilers ◽  
I. Florinsky

As soil properties influence productivity, it is of interest to characterize their distribution for the purpose of intensified agricultural management in variable landscapes. Soil properties (soil organic C content, soil pH, A horizon thickness, solum thickness and depth to carbonates) were studied in 10 intensively sampled transects in a gently undulating glacial till landscape near Miniota, Manitoba. Using a landform description model, the study site was delineated into upper, mid and lower elevation landform element complexes (LEC). The program used a digital elevation model created from relative elevation data collected on a 10-m grid. Sample points were also stratified by soil series; Newdale (Orthic Black Chernozem), Varcoe (Gleyed Rego Black Chernozem) and Angusville (Gleyed Eluviated Black Chernozem) soils of the Newdale association were identified. Landform element complexes were ranked lower > mid > upper with respect to convergent landscape character. The eluviated Angusville profiles occurred under more convergent landscape character than the Newdale or Varcoe series. There was a consistent rank of lower > mid > upper with respect to depth to carbonates, A horizon thickness, solum thickness and soil organic C content. Relative ranking of the pH in the Ap horizon was the opposite. In all cases, the lower LEC emerged as most clearly distinct. There was substantial variability in soil profile development, and, therefore, soil series membership, within individual LEC. This indicated that the scale at which LEC are delineated is broader than that at which soil series variability occurs. Nonetheless, LEC were useful in capturing gross variability in soil properties within the landscape at a scale that would allow unique agricultural management practices. Key words: Soil-landscape, solum thickness, depth to carbonates, organic carbon, soil pH

2021 ◽  
Author(s):  
Yu-Pei Chen ◽  
Chai-Fang Tsai ◽  
PD Rekha ◽  
Sudeep Ghate ◽  
Hsi-Yuan Huang ◽  
...  

Abstract Background The soil quality and health of the tea plantations are dependent on the agriculture management practices, and long-term chemical fertilizer use is implicated in soil decline. Hence, several sustainable practices are used to improve and maintain the soil quality. Here, in this study, changes in soil properties, enzymatic activity, and dysbiosis in bacterial community composition were compared using three agricultural management practices, namely conventional (CA), sustainable (SA) and transformational agriculture (TA) in the tea plantation during 2016 and 2017 period. Soil samples at two-months intervals were collected and analyzed. Results The results of the enzyme activities revealed that acid phosphatase, arylsulfatase, β-glucosidase, and urease activities differed considerably among the soils representing the three management practices. Combining the redundancy and multiple regression analysis, the change in the arylsulfatase activity was explained by soil pH as a significant predictor in the SA soils. The soil bacterial community was predominated by the phyla Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, and Bacteroidetes in the soil throughout the sampling period. Higher Alpha diversity scores indicated increased bacterial abundance and diversity in the SA soils. A significant relationship between bacterial richness indices (SOBS, Chao and ACE) and soil pH, K and P was observed in the SA soils. The diversity indices namely Shannon and Simpson also showed variations, suggesting the shift in the diversity of less abundant and more common species. Furthermore, the agricultural management practices, soil pH fluctuation and the extractable elements had a greater influence on bacterial structure than that of temporal change. Conclusions Based on the cross-over analysis of bacterial composition, enzymatic activity and the soil properties, the relationship between bacterial composition and biologically-driven ecological processes can identified as indicators of sustainability for the tea plantation.


2021 ◽  
Vol 62 (1) ◽  
Author(s):  
Yu-Pei Chen ◽  
Chia-Fang Tsai ◽  
P. D. Rekha ◽  
Sudeep D. Ghate ◽  
Hsi-Yuan Huang ◽  
...  

Abstract Background The soil quality and health of the tea plantations are dependent on agriculture management practices, and long-term chemical fertilizer use is implicated in soil decline. Hence, several sustainable practices are used to improve and maintain the soil quality. Here, in this study, changes in soil properties, enzymatic activity, and dysbiosis in bacterial community composition were compared using three agricultural management practices, namely conventional (CA), sustainable (SA), and transformational agriculture (TA) in the tea plantation during 2016 and 2017 period. Soil samples at two-months intervals were collected and analyzed. Results The results of the enzyme activities revealed that acid phosphatase, arylsulfatase, β-glucosidase, and urease activities differed considerably among the soils representing the three management practices. Combining the redundancy and multiple regression analysis, the change in the arylsulfatase activity was explained by soil pH as a significant predictor in the SA soils. The soil bacterial community was predominated by the phyla Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, and Bacteroidetes in the soil throughout the sampling period. Higher Alpha diversity scores indicated increased bacterial abundance and diversity in the SA soils. A significant relationship between bacterial richness indices (SOBS, Chao and ACE) and soil pH, K and, P was observed in the SA soils. The diversity indices namely Shannon and Simpson also showed variations, suggesting the shift in the diversity of less abundant and more common species. Furthermore, the agricultural management practices, soil pH fluctuation, and the extractable elements had a greater influence on bacterial structure than that of temporal change. Conclusions Based on the cross-over analysis of the bacterial composition, enzymatic activity, and soil properties, the relationship between bacterial composition and biologically-driven ecological processes can be identified as indicators of sustainability for the tea plantation.


2010 ◽  
Vol 90 (4) ◽  
pp. 679-683 ◽  
Author(s):  
S.W. Ripley ◽  
M. Krzic ◽  
G.E. Bradfield ◽  
A.A. Bomke

Grazing by domestic livestock, firewood cutting, and timber harvesting are the principal uses of the subtropical transition forest located between the humid Yungas and dry Chaco forests at the base of the Andes mountains in Jujuy province, northwestern Argentina. The objective of this study was to conduct a preliminary comparison of selected soil properties between two common land-use systems - deciduous forest rangeland (DFR) and open savanna anthropogenic rangeland (AR) - in the Yungas/Chaco transition forest. Soil organic C and N were measured at a depth of 0-10 cm, while soil penetration resistance was measured at 0-5 and 5-10 cm depths. Soil degradation in the AR was indicated by lower average values for litter cover (56%), soil organic C (28.1 g kg-1), and total N (2.93 g kg-1), and greater soil penetration resistance compared with the DFR (litter cover 94%; soil organic C 45.0 g kg-1, total N 4.45 g kg-1). This created potential for further soil losses from water erosion during monsoon rains and emphasized the need to establish sustainable grazing management practices.


Soil Research ◽  
2019 ◽  
Vol 57 (2) ◽  
pp. 200 ◽  
Author(s):  
J. Somasundaram ◽  
M. Salikram ◽  
N. K. Sinha ◽  
M. Mohanty ◽  
R. S. Chaudhary ◽  
...  

Conservation agriculture (CA) including reduced or no-tillage and crop residue retention, is known to be a self–sustainable system as well as an alternative to residue burning. The present study evaluated the effect of reduced tillage coupled with residue retention under different cropping systems on soil properties and crop yields in a Vertisol of a semiarid region of central India. Two tillage systems – conventional tillage (CT) with residue removed, and reduced tillage (RT) with residue retained – and six major cropping systems of this region were examined after 3 years of experimentation. Results demonstrated that soil moisture content, mean weight diameter, percent water stable aggregates (>0.25mm) for the 0–15cm soil layer were significantly (Pmoderately labile>less labile. At the 0–15cm depth, the contributions of moderately labile, less labile and non-labile C fractions to total organic C were 39.3%, 10.3% and 50.4% respectively in RT and corresponding values for CT were 38.9%, 11.7% and 49.4%. Significant differences in different C fractions were observed between RT and CT. Soil microbial biomass C concentration was significantly higher in RT than CT at 0–15cm depth. The maize–chickpea cropping system had significantly (P–1 followed by soybean+pigeon pea (2:1) intercropping (3.50 t ha–1) and soybean–wheat cropping systems (2.97 t ha–1). Thus, CA practices could be sustainable management practices for improving soil health and crop yields of rainfed Vertisols in these semiarid regions.


Land ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 8
Author(s):  
Rok Mihelič ◽  
Jure Pečnik ◽  
Matjaž Glavan ◽  
Marina Pintar

Maintaining good soil quality is crucial for the sustainability of agriculture. This study aimed to evaluate the effectiveness of the visual soil assessment (VSA) method by testing it on two soil types and two agricultural management practices (AMP) (organic and integrated) that are considered to protect soil quality. We selected two farms with plots on two river terraces with different soil properties. The test was based on the modified method Annual Crops Visual Quality Assessment developed by the Food and Agriculture Organization of the United Nations and supported by a standardized soil physical and chemical analysis. This study showed that the assessed score is highly dependent on the type of farming practice and how soils are managed. The soil type also plays an important role. The results for Calcaric Fluvisol showed that the effects of selected agricultural management practices on the visual assessment of soil quality could be almost undetectable. The time of assessment also plays a significant role in VSA scoring. Different crops and agricultural activities with significant impacts on the soil occur throughout the year (especially in vegetable production). It was observed that a higher score for the soil cover indicator had a beneficial effect on the total VSA rating.


2018 ◽  
Author(s):  
Jacqueline R. England ◽  
Raphael Armando Viscarra Rossel

Abstract. Maintaining or increasing soil organic carbon (C) is important for securing food production, and for mitigating greenhouse gas (GHG) emissions, climate change and land degradation. Some land management practices in cropping, grazing, horticultural and mixed farming systems can be used to increase organic C in soil, but to assess their effectiveness, we need accurate and cost-efficient methods for measuring and monitoring the change. To determine the stock of organic C in soil, one needs measurements of soil organic C concentration, bulk density and gravel content, but using conventional laboratory-based analytical methods is expensive. Our aim here is to review the current state of proximal sensing for the development of new soil C accounting methods for emissions reporting and in emissions reduction schemes. We evaluated sensing techniques in terms of their rapidity, cost, accuracy, safety, readiness and their state of development. The most suitable technique for measuring soil organic C concentrations appears to be vis–NIR spectroscopy and for bulk density active gamma-ray attenuation. Sensors for measuring gravel have not been developed, but an interim solution with rapid wet-sieving and automated measurement appears useful. Field-deployable, multi-sensor systems are needed for cost-efficient soil C accounting. Proximal sensing can be used for soil organic C accounting, but the methods need to be standardised and procedural guidelines need to be developed to ensure proficient measurement and accurate reporting and verification. This is particularly important if the schemes use financial incentives for landholders to adopt management practices to sequester soil organic C. We list and discuss the requirements for the development of new soil C accounting methods that are based on proximal sensing, including requirements for recording, verification and auditing.


2006 ◽  
Vol 21 (1) ◽  
pp. 49-59 ◽  
Author(s):  
B.J. Wienhold ◽  
J.L. Pikul ◽  
M.A. Liebig ◽  
M.M. Mikha ◽  
G.E. Varvel ◽  
...  

AbstractSoils perform a number of essential functions affecting management goals. Soil functions were assessed by measuring physical, chemical, and biological properties in a regional assessment of conventional (CON) and alternative (ALT) management practices at eight sites within the Great Plains. The results, reported in accompanying papers, provide excellent data for assessing how management practices collectively affect agronomic and environmental soil functions that benefit both farmers and society. Our objective was to use the regional data as an input for two new assessment tools to evaluate their potential and sensitivity for detecting differences (aggradation or degradation) in management systems. The soil management assessment framework (SMAF) and the agro-ecosystem performance assessment tool (AEPAT) were used to score individual soil properties at each location relative to expected conditions based on inherent soil-forming factors and to compute index values that provide an overall assessment of the agronomic and environmental impact of the CON and ALT practices. SMAF index values were positively correlated with grain yield (an agronomic function) and total organic matter (an agronomic and environmental function). They were negatively correlated with soil nitrate concentration at harvest (an indicator of environmental function). There was general agreement between the two assessment tools when used to compare management practices. Users can measure a small number of soil properties and use one of these tools to easily assess the effectiveness of soil management practices. A higher score in either tool identifies more environmentally and agronomically sustainable management. Temporal variability in measured indicators makes dynamic assessments of management practices essential. Water-filled pore space, aggregate stability, particulate organic matter, and microbial biomass were sensitive to management and should be included in studies aimed at improving soil management. Reductions in both tillage and fallow combined with crop rotation has resulted in improved soil function (e.g., nutrient cycling, organic C content, and productivity) throughout the Great Plains.


2002 ◽  
Vol 42 (3) ◽  
pp. 341 ◽  
Author(s):  
N. R. Hulugalle ◽  
P. C. Entwistle ◽  
T. B. Weaver ◽  
F. Scott ◽  
L. A. Finlay

An experiment was established in 1993 on a sodic Vertosol (Vertisol, Typic Haplustert) at Merah North, north–western New South Wales, to evaluate the sustainability of selected irrigated cotton (Gossypium hirsutum L.)–rotation crop sequences. Crop sequences were selected following discussions with local cotton growers. The indices used to evaluate sustainability included soil quality, microbiology, yield and profitability. This paper presents data on soil properties [soil organic C, structure as air–filled porosity of oven–dried soil, exchangeable Ca, Mg, K and Na, pH, electrical conductivity (EC1:5) and EC1:5/exchangeable Na in the 0–0.6 m depth], lint yield and profitability (as gross margins/ha and gross margins/ML of irrigation water). The 6 cropping systems sown after minimum tillage were: continuous cotton (R1), long–fallow cotton (R2), cotton–green manured faba bean (Vicia faba L.) (R3), cotton–dolichos (Lablab purpureus L.)–green manured faba bean in the first year followed by cotton–wheat (Triticum aestivum L.) (R4), cotton–dolichos (R5), cotton–fertilised dolichos (with P and K removed by cotton replaced as fertiliser) (R6). In 1996, air–filled porosity of oven–dried soil was highest with R4 at the surface but lowest with R1 in the 0.15–0.30 m depth. In subsequent years, air–filled porosity of oven–dried soil was higher with R2 and R4 in the deeper depths, although differences between cropping sequences were small. Air–filled porosity of oven–dried soil increased between 1996 and 1998 in all treatments, and was probably caused by the change from intensive to minimum tillage in 1993, irrigation with moderately saline water and application of gypsum resulting in an increase in EC1:5/exchangeable Na. In general, differences in soil properties such as soil organic C, exchangeable Ca, Mg, K and Na, pH, electrical conductivity (EC1:5) and EC1:5/exchangeable Na between cropping sequences were far less than those which occurred with time. The key changes were decreases in pH, exchangeable sodium percentage, exchangeable cations and organic C between 1994 and 1996, and increases in air–filled porosity of oven–dried soil, EC1:5 and EC1:5/exchangeable Na between 1996 and 1998. A decrease in air–filled porosity of oven–dried soil occurred between 1998 and 1999 as a consequence of preparing land and sowing cotton under very wet conditions. R1 had the highest cumulative gross margin/ha and R3 had the lowest. R2 had the highest cumulative gross margin/ML of irrigation water and R3 again the lowest. Among crop sequences, R2 and R4 gave the best returns with respect to both land and water resources.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247177
Author(s):  
Ram Ratan Verma ◽  
Tapendra Kumar Srivastava ◽  
Pushpa Singh ◽  
B. L. Manjunath ◽  
Anil Kumar

Soils of Indian Konkan region, part of ecologically sensitive Western Ghats have been subjected to anthropogenic activities of late. This has endangered the ecological security through conspicuous losses in topsoil quality. The rationale of the present study was to map the soil properties and create management zones for ensuring food and nutritional security. The study was conducted in South Goa district of the state of Goa located in Konkan region. A total of 258 geo-referenced soil samples were collected and analyzed for pH, EC, SOC, available N, P, K and DTPA extractable micronutrients viz., Zn, Cu, Fe and Mn. Soil pH was found to be in acidic range. A wide variability existed in SOC content ranging from 0.12–5.85%. EC was mostly neutral with mean value 0.08±0.37 dSm-1, while available nitrogen (AN), available phosphorus (AP) and available potassium (AK) varied in range from 56.4–621.6 kg ha-1, 0.5–49.7 kg ha-1 and 31.5–786.2 kg ha-1 with mean values 211.2±76.9, 8.4±8.2 and 202.3±137.6 kg ha-1, respectively. A wide range was exhibited by cationic DTPA extractable Zn, Cu, Fe and Mn with mean values, 0.22±0.30, 0.44±0.60, 7.78±5.98 and 7.86±5.86 mg kg-1, respectively. Soil pH exhibited significant positive correlation with EC, AP AK and Zn and negative correlation with Fe and Cu. SOC exhibited significantly correlated with AN, AP, AK, Zn and Fe. Geo-statistical analysis revealed J-Bessel as best fit semivariogram model for pH, AP and AK; Rational Quadratic for EC, SOC, Zn and Mn; Hole effect for AN; Stable for Cu and K-Bessel for Fe for their spatial mapping. Four principal components showed eigenvalues more than one and cumulative variability of 59.38%. Three distinct soil management zones showing significant variation in soil properties were identified and delineated for wider scale management of soils. Precision nutrient management based on spatial variation and their mapping would enable refined agricultural and environmental management practices in the region.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 539 ◽  
Author(s):  
R. Michael Lehman ◽  
Shannon L. Osborne ◽  
Kimberly McGraw

Linking agricultural management tactics to quantifiable changes in soil health-related properties is a key objective for increasing adoption of the most favorable management practices. We used two long-term, no-till cropping studies to illustrate the variable patterns of response of soil structure indices and microbial activity to additional management tactics, including crop rotational diversity, residue management and cover cropping. We found that observable effects of management tactics on soil properties were often dependent on the current crop phase sampled, even though the treatments were well-established. In some cases, a single additional management tactic produced a response, two tactics each produced a response and sometimes there were interactions between tactics. However, importantly, we never observed a negative effect for any of the response variables when stacking soil health building practices in no-till cropping systems. The collective results from the two field studies illustrate that soil health improvements with stacking management tactics are not always simply additive and are affected by temporal relationships inherent to the treatments. We conclude that the implementation of multiple positive management tactics increases the likelihood that improvements in soil properties can be documented with one or more of the proxy measures for soil health.


Sign in / Sign up

Export Citation Format

Share Document