Comparative analysis of vertical thermohaline structure of the northwestern tropical Atlantic and Eurasian basin of the Arctic ocean

2012 ◽  
Vol 37 (7) ◽  
pp. 461-467
Author(s):  
N. P. Kuz’mina ◽  
N. V. Zhurbas
2011 ◽  
Vol 80 (4) ◽  
pp. 459-484
Author(s):  
Yoshifumi Tanaka

AbstractThe determination of spatial ambit of the coastal State jurisdiction is fundamental for ocean governance and the same applies to the Arctic Ocean. In this regard, a question arises how it is possible to delimit marine spaces where the jurisdiction of two or more coastal States overlaps. Without rules on maritime delimitation in marine spaces where the jurisdiction of coastal States overlaps, the legal uses of these spaces cannot be enjoyed effectively. In this sense, maritime delimitation is of paramount importance in the Arctic Ocean governance. Thus, this study will examine Arctic maritime delimitations by comparing them to the case law concerning maritime delimitation. In so doing, this study seeks to clarify features of Arctic maritime delimitations.


2018 ◽  
Vol 32 (1) ◽  
pp. 15-32 ◽  
Author(s):  
Qiang Wang ◽  
Claudia Wekerle ◽  
Sergey Danilov ◽  
Dmitry Sidorenko ◽  
Nikolay Koldunov ◽  
...  

Abstract The freshwater stored in the Arctic Ocean is an important component of the global climate system. Currently the Arctic liquid freshwater content (FWC) has reached a record high since the beginning of the last century. In this study we use numerical simulations to investigate the impact of sea ice decline on the Arctic liquid FWC and its spatial distribution. The global unstructured-mesh ocean general circulation model Finite Element Sea Ice–Ocean Model (FESOM) with 4.5-km horizontal resolution in the Arctic region is applied. The simulations show that sea ice decline increases the FWC by freshening the ocean through sea ice meltwater and modifies upper ocean circulation at the same time. The two effects together significantly increase the freshwater stored in the Amerasian basin and reduce its amount in the Eurasian basin. The salinification of the upper Eurasian basin is mainly caused by the reduction in the proportion of Pacific Water and the increase in that of Atlantic Water (AW). Consequently, the sea ice decline did not significantly contribute to the observed rapid increase in the Arctic total liquid FWC. However, the changes in the Arctic freshwater spatial distribution indicate that the influence of sea ice decline on the ocean environment is remarkable. Sea ice decline increases the amount of Barents Sea branch AW in the upper Arctic Ocean, thus reducing its supply to the deeper Arctic layers. This study suggests that all the dynamical processes sensitive to sea ice decline should be taken into account when understanding and predicting Arctic changes.


2015 ◽  
Vol 132 ◽  
pp. 128-152 ◽  
Author(s):  
Bert Rudels ◽  
Meri Korhonen ◽  
Ursula Schauer ◽  
Sergey Pisarev ◽  
Benjamin Rabe ◽  
...  

1999 ◽  
Vol 21 (1-4) ◽  
pp. 3-27 ◽  
Author(s):  
Bert Rudels ◽  
Göran Björk ◽  
Robin D Muench ◽  
Ursula Schauer

2009 ◽  
Vol 429 (2) ◽  
pp. 1567-1569 ◽  
Author(s):  
I. E. Frolov ◽  
I. M. Ashik ◽  
H. Kassens ◽  
I. V. Polyakov ◽  
A. Yu. Proshutinsky ◽  
...  

Oceanology ◽  
2019 ◽  
Vol 59 (1) ◽  
pp. 133-142
Author(s):  
Al. A. Schreider ◽  
A. A. Schreider ◽  
A. E. Sazhneva ◽  
M. S. Kluev ◽  
A. L. Brehovskih

2019 ◽  
Author(s):  
Nataliya Zhurbas ◽  
Natalia Kuzmina

Abstract. Data of CTD transects across continental slope of the Eurasian Basin and the St. Anna Trough performed during NABOS (Nansen and Amundsen Basins Observing System) project in 2003–2015 are used to assess transport and propagation features of the Atlantic Water (AW) in the Arctic Ocean. Estimates of θ-S indices and volume flow rate of the current carrying the AW in the Eurasian Basin were obtained. The assessments were based on the analysis of CTD data including 33 sections in the Eurasian Basin, 4 transects in the St. Anna Trough and 2 transects in the Makarov Basin; additionally a CTD transect of the PolarStern-1996 expedition (PS-96) was considered. Using spatial distributions of temperature, salinity, and density on the transects and applying θ-S analysis, the variability of thermohaline pattern on the AW pathway along the slope of Eurasian Basin was investigated. The Fram Strait branch of the Atlantic Water (FSBW) was satisfactorily identified on all transects, including two transects in the Makarov Basin (along 159° E), while the сold waters, which can be associated with the influence of the Barents Sea branch of the Atlantic water (BSBW), on the transects along 126° E, 142° E and 159° E, were observed in the depth range below 800 m and had a negligible effect on the spatial structure of isopycnic surfaces. Special attention was paid to the variability of the volume flow rate of the AW propagating along the continental slope of the Eurasian Basin. The geostrophic volume flow rate was calculated using the dynamic method. An interpretation of the spatial and temporal variability of hydrological parameters characterizing the flow of the AW in the Eurasian Basin is presented. The geostrophic volume flow rate decreases significantly farther away from the areas of the AW inflow to the Eurasian Basin. Thus, the geostrophic estimate of the volume rate for the AW flow in the Makarov Basin at 159° E was found to be more than an order of magnitude smaller than the estimates of the volume flow rate in the Eurasian Basin, implying that the major part of the AW entering the Arctic Ocean circulates cyclonically within the Nansen and Amundsen Basins. There is an absolute maximum of θmax (AW core temperature) in 2006–2008 time series and a maximum in 2013, but only at 103° E. Salinity S(θmax) (AW core salinity) time series display an increase of the AW salinity in 2006–2008 and 2013 (at 103° E) that can be referred to as a AW salinization in the early 2000-ies. The maxima of θmax and S(θmax) in 2006–2008 and 2013 were accompanied by the volume flow rate highs. Additionally the time average volume rates were calculated for the FSBW flow (in the longitude range 31–92° E), for the BSBW flow in the St. Anna Trough and for a combined FSBW and BSBW flow in longitude range 94–107° E. A detailed discussion of the results is presented.


2021 ◽  
Author(s):  
Marina Tarkhanova ◽  
Elena Golubeva

<p>The report discusses issues related to the influence of the increased discharge of Arctic rivers on the thermohaline structure of waters outside the Arctic shelf and, in particular, on the variability of Arctic Ocean heat content. The three-dimensional numerical model of the ocean and sea ice SibCIOM (Siberian Coupled Ice-Ocean Model), developed at the Institute of Computational Mathematics and Mathematical Geophysics SB RAS to study the climatic variability of the Arctic Ocean, and the NCEP/NCAR atmospheric reanalysis data are used.</p><p>To reveal the sensitivity of the model fields to the intensity of river runoff, numerical experiments assume the inclusion of variations in river discharge with unchanged remaining conditions, starting from 2000. The deviations of the monthly average values in a numerical experiment with increased discharge of individual Arctic rivers from the basic situation based on the monthly average climatic runoff assignment are considered.</p><p>An analysis of the numerical results obtained with increased discharge of the major Siberian rivers (Ob, Yenisei, Lena) by 1.3 times showed an increase in the Kara Sea's bottom temperature. This was followed by the warming of the subsurface layer of the waters propagating along the continental slope and increasing the heat content of the upper 200-meter layer of the Eastern Eurasian Basin. The heat preservation entering the deep-water part through the Kara Sea straits was facilitated by an increase in stratification's stability and a decrease of the mixed layer depth by 5-10 m on the continental slope of the Eurasian Basin. A similar process with a time delay (6-7 years) and on a smaller scale is developing on the Amerasian basin's continental slope and the Chukchi Sea shelf.</p><p>In the numerical experiment with an increased discharge of the Mackenzie River, deviations in the Beaufort Sea heat and freshwater content appear during the first two years. Still, their values are too small under the river's small discharge compared to the Siberian rivers' discharge.</p><p>The study is supported by the Russian Foundation for Basic Research, Grant No. 20-05-00536 A.</p>


Sign in / Sign up

Export Citation Format

Share Document