Assessing the Effectiveness of Oxidation Inhibitors for Electrical Connection between Aluminum Conductors

2021 ◽  
Vol 57 (4) ◽  
pp. 507-512
Author(s):  
S. M. Korobeinikov ◽  
V. A. Loman
1961 ◽  
Vol 55 (162) ◽  
pp. 489-496 ◽  
Author(s):  
L. G. Angert ◽  
A. S. Kuz'Minski??
Keyword(s):  

1982 ◽  
Vol 13 (30) ◽  
Author(s):  
I. E. KIRULE ◽  
D. YA. RUBENE ◽  
E. A. BISENIEKS ◽  
G. D. TIRZIT ◽  
G. YA. DUBUR

2009 ◽  
Vol 114 (2) ◽  
pp. 466-471 ◽  
Author(s):  
S ITAGAKI ◽  
T KUROKAWA ◽  
C NAKATA ◽  
Y SAITO ◽  
S OIKAWA ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 216
Author(s):  
Yongwei Li ◽  
Ting Liang ◽  
Cheng Lei ◽  
Qiang Li ◽  
Zhiqiang Li ◽  
...  

In this study, a preparation method for the high-temperature pressure sensor based on the piezoresistive effect of p-type SiC is presented. The varistor with a positive trapezoidal shape was designed and etched innovatively to improve the contact stability between the metal and SiC varistor. Additionally, the excellent ohmic contact was formed by annealing at 950 °C between Ni/Al/Ni/Au and p-type SiC with a doping concentration of 1018cm−3. The aging sensor was tested for varistors in the air of 25 °C–600 °C. The resistance value of the varistors initially decreased and then increased with the increase of temperature and reached the minimum at ~450 °C. It could be calculated that the varistors at ~100 °C exhibited the maximum temperature coefficient of resistance (TCR) of ~−0.35%/°C. The above results indicated that the sensor had a stable electrical connection in the air environment of ≤600 °C. Finally, the encapsulated sensor was subjected to pressure/depressure tests at room temperature. The test results revealed that the sensor output sensitivity was approximately 1.09 mV/V/bar, which is better than other SiC pressure sensors. This study has a great significance for the test of mechanical parameters under the extreme environment of 600 °C.


Author(s):  
Brian Skoglind ◽  
Travis Roberts ◽  
Sourabh Karmakar ◽  
Cameron Turner ◽  
Laine Mears

Abstract Electrical connections in consumer products are typically made manually rather than through automated assembly systems due to the high variety of connector types and connector positions, and the soft flexible nature of their structures. Manual connections are prone to failure through missed or improper connections in the assembly process and can lead to unexpected downtime and expensive rework. Past approaches for registering connection success such as vision verification or Augmented Reality have shown limited ability to verify correct connection state. However, the feasibility of an acoustic-based verification system for electrical connector confirmation has not been extensively researched. One of the major problems preventing acoustic based verification in a manufacturing or assembly environment is the typically low signal to noise ratio (SNR) between the sound of an electrical connection and the diverse soundscape of the plant. In this study, a physical means of background noise mitigation and signature amplification are investigated in order to increase the SNR between the electrical connection and the plant soundscape in order to improve detection. The concept is that an increase in the SNR will lead to an improvement in the accuracy and robustness of an acoustic event detection and classification system. Digital filtering has been used in the past to deal with low SNRs, however, it runs the risk of filtering out potential important features for classification. A sensor platform is designed to filter out and reduce background noise from the plant without effecting the raw acoustic signal of the electrical connection, and an automated detection algorithm is presented. The solution is over 75% effective at detecting and classifying connections.


Sign in / Sign up

Export Citation Format

Share Document