Complex surface modeling using perturbation functions

2007 ◽  
Vol 43 (3) ◽  
pp. 226-231 ◽  
Author(s):  
S. I. Vyatkin
2013 ◽  
Vol 457-458 ◽  
pp. 571-575 ◽  
Author(s):  
Hong Liu ◽  
Li Li Luo

In this paper, for the large scale production demand of waveform spring, it combines UG advantage of complex surface modeling and computer numerical control (CNC) machining, uses this way of surface modeling method of bicubic B-spline to establish the stamping die geometry model for the need of waveform spring production. And from a process point of view, it analyzes the key issues of die CNC machining to achieve the selection of optimal small tool radius, tool path rational planning and rough finishing parameters set. The application results show that: the shape precision of die surface could meet the design requirements and could achieve the precision stamping of waveform spring.


Author(s):  
A. Tanaka ◽  
M. Yamaguchi ◽  
T. Hirano

The plasma polymerization replica method and its apparatus have been devised by Tanaka (1-3). We have published several reports on its application: surface replicas of biological and inorganic specimens, replicas of freeze-fractured tissues and metal-extraction replicas with immunocytochemical markers.The apparatus for plasma polymerization consists of a high voltage power supply, a vacuum chamber containing a hydrocarbon gas (naphthalene, methane, ethylene), and electrodes of an anode disk and a cathode of the specimen base. The surface replication by plasma polymerization in negative glow phase on the cathode was carried out by gassing at 0.05-0.1 Torr and glow discharging at 1.5-3 kV D.C. Ionized hydrocarbon molecules diffused into complex surface configurations and deposited as a three-dimensionally polymerized film of 1050 nm in thickness.The resulting film on the complex surface had uniform thickness and showed no granular texture. Since the film was chemically inert, resistant to heat and mecanically strong, it could be treated with almost any organic or inorganic solvents.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1054
Author(s):  
Rozaimi Zakaria ◽  
Abd. Fatah Wahab ◽  
Isfarita Ismail ◽  
Mohammad Izat Emir Zulkifly

This paper discusses the construction of a type-2 fuzzy B-spline model to model complex uncertainty of surface data. To construct this model, the type-2 fuzzy set theory, which includes type-2 fuzzy number concepts and type-2 fuzzy relation, is used to define the complex uncertainty of surface data in type-2 fuzzy data/control points. These type-2 fuzzy data/control points are blended with the B-spline surface function to produce the proposed model, which can be visualized and analyzed further. Various processes, namely fuzzification, type-reduction and defuzzification are defined to achieve a crisp, type-2 fuzzy B-spline surface, representing uncertainty complex surface data. This paper ends with a numerical example of terrain modeling, which shows the effectiveness of handling the uncertainty complex data.


2021 ◽  
Vol 8 (1) ◽  
pp. 208-222
Author(s):  
Georges Dloussky

Abstract Let S be a compact complex surface in class VII0 + containing a cycle of rational curves C = ∑Dj . Let D = C + A be the maximal connected divisor containing C. If there is another connected component of curves C ′ then C ′ is a cycle of rational curves, A = 0 and S is a Inoue-Hirzebruch surface. If there is only one connected component D then each connected component Ai of A is a chain of rational curves which intersects a curve Dj of the cycle and for each curve Dj of the cycle there at most one chain which meets Dj . In other words, we do not prove the existence of curves other those of the cycle C, but if some other curves exist the maximal divisor looks like the maximal divisor of a Kato surface with perhaps missing curves. The proof of this topological result is an application of Donaldson theorem on trivialization of the intersection form and of deformation theory. We apply this result to show that a twisted logarithmic 1-form has a trivial vanishing divisor.


Fire ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 36
Author(s):  
Quinn A. Hiers ◽  
E. Louise Loudermilk ◽  
Christie M. Hawley ◽  
J. Kevin Hiers ◽  
Scott Pokswinski ◽  
...  

Measuring wildland fuels is at the core of fire science, but many established field methods are not useful for ecosystems characterized by complex surface vegetation. A recently developed sub-meter 3D method applied to southeastern U.S. longleaf pine (Pinus palustris) communities captures critical heterogeneity, but similar to any destructive sampling measurement, it relies on separate plots for calculating loading and consumption. In this study, we investigated how bulk density differed by 10-cm height increments among three dominant fuel types, tested predictions of consumption based on fuel type, height, and volume, and compared this with other field measurements. The bulk density changed with height for the herbaceous and woody litter fuels (p < 0.001), but live woody litter was consistent across heights (p > 0.05). Our models predicted mass well based on volume and height for herbaceous (RSE = 0.00911) and woody litter (RSE = 0.0123), while only volume was used for live woody (R2 = 0.44). These were used to estimate consumption based on our volume-mass predictions, linked pre- and post-fire plots by fuel type, and showed similar results for herbaceous and woody litter when compared to paired plots. This study illustrates an important non-destructive alternative to calculating mass and estimating fuel consumption across vertical volume distributions at fine scales.


Sign in / Sign up

Export Citation Format

Share Document