scholarly journals Non-Destructive Fuel Volume Measurements Can Estimate Fine-Scale Biomass across Surface Fuel Types in a Frequently Burned Ecosystem

Fire ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 36
Author(s):  
Quinn A. Hiers ◽  
E. Louise Loudermilk ◽  
Christie M. Hawley ◽  
J. Kevin Hiers ◽  
Scott Pokswinski ◽  
...  

Measuring wildland fuels is at the core of fire science, but many established field methods are not useful for ecosystems characterized by complex surface vegetation. A recently developed sub-meter 3D method applied to southeastern U.S. longleaf pine (Pinus palustris) communities captures critical heterogeneity, but similar to any destructive sampling measurement, it relies on separate plots for calculating loading and consumption. In this study, we investigated how bulk density differed by 10-cm height increments among three dominant fuel types, tested predictions of consumption based on fuel type, height, and volume, and compared this with other field measurements. The bulk density changed with height for the herbaceous and woody litter fuels (p < 0.001), but live woody litter was consistent across heights (p > 0.05). Our models predicted mass well based on volume and height for herbaceous (RSE = 0.00911) and woody litter (RSE = 0.0123), while only volume was used for live woody (R2 = 0.44). These were used to estimate consumption based on our volume-mass predictions, linked pre- and post-fire plots by fuel type, and showed similar results for herbaceous and woody litter when compared to paired plots. This study illustrates an important non-destructive alternative to calculating mass and estimating fuel consumption across vertical volume distributions at fine scales.

Author(s):  
Lucinda Smart ◽  
Richard McNealy ◽  
Harvey Haines

In-Line Inspection (ILI) is used to prioritize metal loss conditions based on predicted failure pressure in accordance with methods prescribed in industry standards such as ASME B31G-2009. Corrosion may occur in multiple areas of metal loss that interact and may result in a lower failure pressure than if flaws were analyzed separately. The B31G standard recommends a flaw interaction criterion for ILI metal loss predictions within a longitudinal and circumferential spacing of 3 times wall thickness, but cautions that methods employed for clustering of ILI anomalies should be validated with results from direct measurements in the ditch. Recent advances in non-destructive examination (NDE) and data correlation software have enabled reliable comparisons of ILI burst pressure predictions with the results from in-ditch examination. Data correlation using pattern matching algorithms allows the consideration of detection and reporting thresholds for both ILI and field measurements, and determination of error in the calculated failure pressure prediction attributable to the flaw interaction criterion. This paper presents a case study of magnetic flux leakage ILI failure pressure predictions compared with field results obtained during excavations. The effect of interaction criterion on calculated failure pressure and the probability of an ILI measurement underestimating failure pressure have been studied. We concluded a reason failure pressure specifications do not exist for ILI measurements is because of the variety of possible interaction criteria and data thresholds that can be employed, and demonstrate herein a method for their validation.


2018 ◽  
Vol 1 (2) ◽  
pp. 238-243
Author(s):  
Taufik Rizaldi ◽  
Sumono Sumono

Penelitian dilakukan di Desa Lubuk Bayas Kecapamatan Perbaungan Kabupaten Serdang Bedagai pada lahan sawah bertekstur lempung berpasir dengan kadar air 49.17% dan dry bulk density 1.26 g/cm3. Tahanan penetrasi tanah ditentukan melalui pengukuran tahanan penetrasi plat dengan menggunakan penetrometer secara langsung di sawah. Pengukuran dilakukan dengan ukuran plat 5x5 cm2, 5x10 cm2, 5x15 cm2 dan 5x20 cm2. Sudut penekanan 90o, 75o, 60o, 45o, 30o dan kedalaman penekanan 4 cm, 8 cm, 12 cm, 16 cm dan 20 cm. Dari hasil pengukuran diperoleh bahwa semakin besar ukuran plat maka gaya penekanan semakin besar namun tahanan penetrasi tanah semakin kecil. Sedangkan semakin dalam plat masuk ke tanah maka tahanan penetrasi tanah semakin besar. Semakin besar sudut penekanan tahanan penetrasi tanah semakin besar. Untuk ukuran plat, sudut tekan dan kedalaman penekanan plat yang sama pada kedalaman lumpur yang berbeda akan menghasilkan gaya penekanan dan tahanan penetrasi tanah yang berbeda. The study was conducted in Lubuk Bayas Village, Perbaungan Subdistrict, Serdang Bedagai District, in paddy fields with sandy clay texture with a water content of 49.17% and dry bulk density of 1.26 g / cm3. Soil penetration resistance iwas determined by measuring plate penetration resistance using a penetrometer directly in the rice field. Measurements were made with a plate size of 5x5 cm2, 5x10 cm2, 5x15 cm2 and 5x20 cm2. The angle of emphasis was 90o, 75o, 60o, 45o, 30o and the depth of emphasis was 4 cm, 8 cm, 12 cm, 16 cm and 20 cm. Results showed that the larger the plate size found, the greater the compressive force, but the penetration resistance of the soil got smaller. Whereas the deeper the plate entered the ground, the greater the penetration resistance of the soil occurred. The greater the angle of suppression the greater the penetration penetration of the soil. For the plate size, the pressure angle and depth of the same plate compression at different mud depths will result in a different force of suppression and soil penetration resistance.


2020 ◽  
Vol 8 (5) ◽  
pp. 358 ◽  
Author(s):  
Yusak Oktavianus ◽  
Massoud Sofi ◽  
Elisa Lumantarna ◽  
Gideon Kusuma ◽  
Colin Duffield

A precast reinforced concrete (RC) T-beam located in seaport Terminal Peti Kemas (TPS) Surabaya built in 1984 is used as a case study to test the accuracy of non-destructive test techniques against more traditional bridge evaluation tools. This bridge is mainly used to connect the berth in Lamong gulf and the port in Java Island for the logistic purposes. The bridge was retrofitted 26 years into its life by adding two strips of carbon fiber reinforced polymer (CFRP) due to excessive cracks observed in the beams. Non-destructive field measurements were compared against a detailed finite element analysis of the structure to predict the performance of the girder in terms of deflection and moment capacity before and after the retrofitting work. The analysis was also used to predict the long-term deflections of the structure due to creep, crack distribution, and the ultimate moment capacity of the individual girder. Moreover, the finite element analysis was used to predict the deflection behavior of the overall bridge due to vehicle loading. Good agreement was obtained between the field measurement and the analytical study. A new service life of the structure considering the corrosion and new vehicle demand is carried out based on field measurement using non-destructive testing. Not only are the specific results beneficial for the Indonesian port authority as the stakeholder to manage this structure, but the approach detailed also paves the way for more efficient evaluation of bridges more generally over their service life.


Fire ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 34
Author(s):  
Anne-Claude Pepin ◽  
Mike Wotton

Parks Canada, in collaboration with Nova Scotia Lands and Forests and Natural Resources Canada, documented shrub fire behaviour in multiple plots burned over two periods: a spring period in June 2014 and a summer period in July 2017. The study area, located within Cape Breton Highlands National Park, comprised fifteen burn units (20 m by 20 m in size). Each unit was ignited by line ignition and burned under a wide range of conditions. Pre-burn fuel characteristics were measured across the site and used to estimate pre-fire fuel load and post-fire fuel consumption. This fuel complex was similar to many flammable shrub types around the world, results show that this shrub fuel type had high elevated fuel loads (3.17 ± 0.84 kg/m2) composed of exposed live and dead stunted black spruce as well as ericaceous shrubs, mainly Kalmia angustifolia (evergreen) and Rhodora canadensis (deciduous). Data show that the dead moisture content in this fuel complex is systematically lower than expected from the traditional relationship between FFMC and moisture content in the Canadian Fire Weather Index System but was statistically correlated with Equilibrium Moisture Content. A significant inverse relationship between bulk density and fire rate of spread was observed as well as a clear seasonal effect between the spring burns and the summer burns, which is likely attributable to the increase in bulk density in the summer. Unlike most shrub research, wind and dead moisture content did not have a statistically significant association with fire spread rates. However, we believe this to be due to noise in wind data and small dataset. Rate of spread as high as 14 m/min and flame lengths over 4 m were recorded under Initial Spread Index values of 6.4 and relative humidity of 54%. A comparison with a number of well-known shrubland spread rate prediction models was made. An aid to operational fire prediction behaviour is proposed, using a fuel type from the Canadian Fire Prediction System (O-1b) and a modified estimate of fuel moisture of the elevated fuel in the fuel complex.


1977 ◽  
Vol 88 (2) ◽  
pp. 449-454 ◽  
Author(s):  
J. L. Hammerton

SUMMARYSeven non-destructive field measurements were made on 1270 pigeon-pea plants varying widely in age, size and plant type, before determining their dry weight. The non-destructive measurements were generally highly correlated with one another, and were all significantly correlated with total, total above-ground and structural dry weights. In one experiment dry weights were best predicted by a multiple regression using stem diameter, length of longest branch and number of branches as predictors. Field height and stem diameter were the best predictors in a second trial. It is suggested that dry weights can be estimated by taking certain measurements at regular intervals, simultaneously sampling a number of plants to determine the best predictive equation. Where it is unnecessary or impracticable to do this, stem diameter appears to be the best single index of dry weight.


2021 ◽  
Vol 24 (s1) ◽  
pp. 58-69
Author(s):  
Lenka Botyanszka

Abstract Over the past few decades, food production has been sufficient. However, climate change has already affected crop yields around the world. With climate change and population growth, threats to future food production come. Among the solutions to this crisis, breeding is deemed one of the most effective ways. However, traditional phenotyping in breeding is time-consuming as it requires thousands and thousands of individuals. Mechanisms and structures of stress tolerance have a great variability. Today, bigger emphasis is placed on the selection of crops based on genotype information and this still requires phenotypic data. Their use is limited by insufficient phenotypic data, including the information on stress photosynthetic responses. The latest research seeks to bring rapid, non-destructive imaging and sensing technology to agriculture, in order to greatly accelerate the in-field measurements of phenotypes and increase the phenotypic data. This paper presents a review of the imaging and sensing technologies for the field phenotyping to describe its development in the last few years.


Author(s):  
Smitha D. Koduru ◽  
Maher Nessim ◽  
Steven Bott ◽  
Mohammad Al-Amin

Abstract A Bayesian methodology was applied to use data from multiple inline inspection (ILI) runs and field measurements with non-destructive examination (NDE) tools to increase confidence in crack size estimates. Multiple crack depth measurements were used in two different ways — namely, to improve the characterization of ILI sizing error bias and to update the maximum depth distribution of individual crack features. This methodology was applied to selected datasets from an industrywide database for crack ILI data collected over a series of Pipeline Research Council International (PRCI) projects. The results of the approach are presented for two datasets, showing reduced variance in sizing error bias and improved confidence in crack depth estimates. In addition to the PRCI datasets, an additional dataset was collected and used to investigate the effect of multiple ILI runs on estimates of rate of detection and depth distribution of undetected features. The results of this analysis are also summarized.


Author(s):  
N. S. Pshchelko ◽  
O. S. Tsareva

The results of evaluating the mechanical strength characteristics of ceramic samples by a non-destructive method based on measuring their permittivity are considered. In this case, measurements of the permittivity were carried out both in the microwave range on an 8-mm interferometer and in a constant electric field. Measurements in a constant electric field demonstrated the best information content and correlation with the ultimate strength in bending of the studied samples.


Author(s):  
Axel Aulin ◽  
Khurram Shahzad ◽  
Robert MacKenzie ◽  
Steven Bott

Abstract Effective and efficient crack management programs for liquids pipelines require consistent, high quality non-destructive examination (NDE) to allow validation of crack in-line inspection (ILI) results. Enbridge leveraged multiple NDE techniques on a 26-inch flash-welded pipe as part of a crack management program. This line is challenging to inspect given the presence of irregular geometry of the weld. In addition, the majority of the flaws are located on the internal surface, so buffing to obtain accurate measurements in the ditch is not possible. As such, to ensure a robust validation of crack ILI performance on the line, phased array ultrasonic testing (PAUT), time-of-flight diffraction (TOFD), and a full matrix capture (FMC) technology were all used as part of the validation dig program. PAUT and FMC were used on most of the flaws characterized as part of the dig program providing a relatively large data set for further analysis. Encoded scans on the flash welded long seam weld were collected in the ditch and additional analyses were performed off-site to characterize and size the flaws. Buff-sizing where possible and coupon cutouts were selected and completed to assist with providing an additional source of truth. Secondary review of results by an NDE specialist improved the quality of the results and identified locations for rescanning due to data quality concerns. Physical defect examinations completed after destructive testing of sample coupon cutouts were utilized to generate a correlation between the actual defect size from fracture surface observation and the field measurements using various NDE methods. This paper will review the findings from the program, including quality-related learnings implemented into standard NDE procedures as well as comparisons of detection and sizing from each methodology. Finally, a summary of the benefits and limitations of each technique based on the experience from a challenging inspection program will be summarized.


Sign in / Sign up

Export Citation Format

Share Document