scholarly journals Applications of Electromagnetic Field to Continuous Casting Process of Steel

2021 ◽  
Vol 15 (4) ◽  
Author(s):  
Hiroshi Harada
2021 ◽  
Vol 75 (1) ◽  
pp. 31-37
Author(s):  
Aleksandra Pataric ◽  
Marija Mihailovic ◽  
Branislav Markovic ◽  
Miroslav Sokic ◽  
Andreja Radovanovic ◽  
...  

Microstructure assessment is crucial for the design and production of high-quality alloys such as cast aluminum alloy ingots. Along with the effect of a more homogeneous microstructure to result in much better mechanical properties, better as-cast alloy quality indicates a higher efficiency of the aluminum alloys production process. During the aluminum alloy solidification process many microstructural defects can occur, which deteriorate the mechanical properties and hence decrease the usability of such an ingot. Application of the electromagnetic field during the vertical continuous casting process significantly reduces occurrence of these defects. In the present study, EN AW 7075 alloy samples were cast with and without application of an electromagnetic field and examined regarding the microstructure, electrical conductivity, and changes in the phase composition. The obtained results clearly show that it is possible to decrease or avoid casting defects by the electromagnetic field application as verified by the microstructure characterization and quantification, electrical conductivity tests and differential thermal analysis (DTA).


2010 ◽  
Vol 654-656 ◽  
pp. 1400-1403
Author(s):  
Jong Ho Kim ◽  
Myoung Gyun Kim ◽  
Joon Pyo Park ◽  
Gyu Chang Lee ◽  
Ju Bum Kim

A new method and apparatus for the fabrication of high-quality, near net shaped aluminum alloy billets is developed by the combination of continuous casting and electromagnetic casting/stirring technique. Traditional machine for continuous casting process involves round, square and rectangular billets; therefore it requires additional multistep forging process to fabricate final products of complicated shape. A new process for the fabrication of near net shaped aluminum billets offers some advantages: the process of extrusion and forging is simplified and the cost of plastic working can be greatly reduced. In order to reduce the peculiar problems such as surface crack and internal defect due to inhomogeneous heat transfer of solidified billets, electromagnetic casting and stirring technique were adopted. The effect of electromagnetic field was compared by observing the microstructure of billets. Grain refinement of aluminum billet was clearly observed by applying electromagnetic field to continuous casting process.


1973 ◽  
Vol 59 (1) ◽  
pp. 72-84 ◽  
Author(s):  
Kichinosuke MATSUNAGA ◽  
Chikakazu NAMIKI ◽  
Taiji ARAKI

2011 ◽  
Vol 295-297 ◽  
pp. 1284-1288 ◽  
Author(s):  
De Wei Li ◽  
Zhi Jian Su ◽  
Li Wei Sun ◽  
Katsukiyo Marukawa ◽  
Ji Cheng He

Swirling flow in an immersion nozzle is effective on improving quality of casting block and casting speed in continuous casting process of steel. However, a refractory swirl blade installed in the nozzle is liable to cause clogging, which limit the application of the process. In this study a new process is proposed, that is a rotating electromagnetic field is set up around an immersion nozzle to induce a swirling flow in it by Lorentz force. New types of swirling flow electromagnetic generator are proposed and the effects of the structure of the generator, the coil current intensity and frequency on the magnetic field and on the flow field in the immersion nozzle are numerically analyzed.


Sign in / Sign up

Export Citation Format

Share Document