scholarly journals Isolation, Identification and Evaluation of Indigenous Plant Growth Promoting Bacterium Klebsiella pneumoniae PNE1

Author(s):  
Pooja Gupta ◽  
Minal Trivedi ◽  
Harsha Soni

Application of chemical fertilizer is an integral practice to optimize crop productivity, but the dominant use of chemical fertilizers contributes largely to the deterioration of the environment, leads to loss of soil fertility, increases pollution, and causes hazardous diseases. Hence, the chemical fertilizers, pesticides and other supplements are being replaced by the plant growth promoting bacteria (PGPB) due to their improved potency and environment friendly nature. Plant growth-promoting bacteria (PGPB) can enhance plant growth by a wide variety of mechanisms like Phosphate (P) solubilization, Potassium solubilisation, siderophore production, biological nitrogen fixation and Indole acetic acid (IAA) production. The Klebsiella species is also known to exhibit important PGP traits like solubilization of phosphate, phytohormone production and good germination potential. In present study the Klebsiella pneumoniae PNE1 was selected from the isolates obtained from vegetable waste collected from Kadi market. The isolate was selected on the basis of its ability for Nitogen fixation, Phosphate solubilization, Potassium solubilization, IAA production, EPS production and biopolymer degradation. The molecular identification through 16S rRNA gene sequence, confirmed the isolate as Klebsiella pneumonia PNE1. Quantitative analysis of ammonia production revealed that isolate Klebsiella pneumonia PNE1 produced 0.5 µg/ml of ammonia (NH3) on 6th day of incubation and produced 0.09 µg/ml Nitrite after 8th day of incubation. The Phosphate solubilisation Index (SI) of the isolate was 4.16 and the isolate released 177.50 μg/ml Phosphate. The qualitative estimation of Potassium solubilisation by the isolate Klebsiella pneumoniae PNE1 in terms of Potassium solubilisation zone was found to increase gradually from day 1 to 7 days and was maximum at 2nd day with a KSI of 3.6. The isolate Klebsiella pneumoniae PNE1 released 29.94 mg/l Potassium on 21th day of incubation respectively. The IAA production was found to be 94.96 µg/ml. The maximum the EPS yield was 11.3 mg/ml. The Klebsiella pneumonia PNE1 had capacity to degrade Cellulose, Pectin and Xylan i.e. all biopolymers tested. The antibiotic susceptibility test indicated that isolate was sensitive to all 22 antibiotics tested. The Klebsiella pneumonia PNE1 thus, shows important plant growth promoting traits and can be used in a bio-fertilizer formulation for sustainable agriculture.

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 912
Author(s):  
Shuming Liu ◽  
Hongmei Liu ◽  
Rui Chen ◽  
Yong Ma ◽  
Bo Yang ◽  
...  

Miscanthus spp. are energy plants and excellent candidates for phytoremediation approaches of metal(loid)s-contaminated soils, especially when combined with plant growth-promoting bacteria. Forty-one bacterial strains were isolated from the rhizosphere soils and roots tissue of five dominant plants (Artemisia argyi Levl., Gladiolus gandavensis Vaniot Houtt, Boehmeria nivea L., Veronica didyma Tenore, and Miscanthus floridulus Lab.) colonizing a cadmium (Cd)-contaminated mining area (Huayuan, Hunan, China). We subsequently tested their plant growth-promoting (PGP) traits (e.g., production of indole-3-acetic acid, siderophore, and 1-aminocyclopropane-1-carboxylate deaminase) and Cd tolerance. Among bacteria, two strains, Klebsiella michiganensis TS8 and Lelliottia jeotgali MR2, presented higher Cd tolerance and showed the best results regarding in vitro growth-promoting traits. In the subsequent pot experiments using soil spiked with 10 mg Cd·kg−1, we investigated the effects of TS8 and MR2 strains on soil Cd phytoremediation when combined with M. floridulus (Lab.). After sixty days of planting M. floridulus (Lab.), we found that TS8 increased plant height by 39.9%, dry weight of leaves by 99.1%, and the total Cd in the rhizosphere soil was reduced by 49.2%. Although MR2 had no significant effects on the efficiency of phytoremediation, it significantly enhanced the Cd translocation from the root to the aboveground tissues (translocation factor > 1). The combination of K. michiganensis TS8 and M. floridulus (Lab.) may be an effective method to remediate Cd-contaminated soils, while the inoculation of L. jeotgali MR2 may be used to enhance the phytoextraction potential of M. floridulus.


2014 ◽  
Vol 2 (4) ◽  
pp. 413-419
Author(s):  
Tanoy Mukherjee ◽  
Avijit Ghosh ◽  
Santanu Maitra

Plant growth promoting bacteria (PGPB) are known to influence plant growth by various direct or indirect mechanisms. Present study was conducted with an aim to estimate the PGPB potential of two nickel tolerant bacterial isolates from river Hooghly. Isolates (I-3) (Gram negative coccobacilli) and (II-1) (Gram positive rods) were observed, among a total of 22 other isolates, to tolerate and accumulate significant amounts of nickel and also have multiple Plant Growth Promoting (PGP) activities like IAA production and phosphate solubilization. Present study also shows that seeds of yellow mustard (Brassica hirta) inoculated with both the test isolates individually, significantly enhanced root and shoot growth and also protected the plant from the various phytotoxic effects of nickel.DOI: http://dx.doi.org/10.3126/ijasbt.v2i4.11107 Int J Appl Sci Biotechnol, Vol. 2(4): 413-419 


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ameerah Bokhari ◽  
Magbubah Essack ◽  
Feras F. Lafi ◽  
Cristina Andres-Barrao ◽  
Rewaa Jalal ◽  
...  

AbstractPlant growth-promoting bacteria (PGPB) are known to increase plant tolerance to several abiotic stresses, specifically those from dry and salty environments. In this study, we examined the endophyte bacterial community of five plant species growing in the Thar desert of Pakistan. Among a total of 368 culturable isolates, 58 Bacillus strains were identified from which the 16 most divergent strains were characterized for salt and heat stress resilience as well as antimicrobial and plant growth-promoting (PGP) activities. When the 16 Bacillus strains were tested on the non-host plant Arabidopsis thaliana, B. cereus PK6-15, B. subtilis PK5-26 and B. circulans PK3-109 significantly enhanced plant growth under salt stress conditions, doubling fresh weight levels when compared to uninoculated plants. B. circulans PK3-15 and PK3-109 did not promote plant growth under normal conditions, but increased plant fresh weight by more than 50% when compared to uninoculated plants under salt stress conditions, suggesting that these salt tolerant Bacillus strains exhibit PGP traits only in the presence of salt. Our data indicate that the collection of 58 plant endophytic Bacillus strains represents an important genomic resource to decipher plant growth promotion at the molecular level.


Author(s):  
José Luis Garcia Hernández ◽  
Luis Guillermo Hernández-Montiel ◽  
Ramón Zulueta-Rodríguez ◽  
Miguel V. Cordoba-Matson ◽  
Jesús Ortega-García ◽  
...  

2018 ◽  
Vol 8 (3) ◽  
pp. 203
Author(s):  
Carolina Belfiore ◽  
Ana P. Santos ◽  
Manuel Contreras ◽  
Maria E. Farias

Argentina is the leading exporter of soybean oil and flour, and the third largest producer of grain. Since, the crop is a matter of great importance to the national economy. Their production depends on the soil as their main resource to ensure a good productive capacity, so it is necessary to preserve the physical, chemical and biological properties of the soil. Although, the indiscriminate use of chemical fertilizers, disturb them. In recent years, there has been a trend towards cleaner production to reduce the use of chemical. One of the alternatives involves biological means through the use of plant growth promoting bacteria. These group of bacteria colonize the rhizosphere of plants and stimulate the plant growth by several mechanisms. The objective of this work was to characterize, identify and evaluate the growth promoting effect of 13 strains isolated from the Andean vegetation rhizosphere. The bacterial isolates were Enterobacteria, Stenotrophomonas, Pseudomonas, Nocardiodes, Bacillus, Exiguobacterium, Acinetobacter and Lactococcus genera. The results of the biochemical characterization determined that from the 13 bacterial strains, which produce siderophores, 11 possess the catalase enzyme, 10 fixate nitrogen, 12 produce the protease enzyme, 12 solubilize phosphorus, and 11 produce indoleacetic acid. The application of different inoculums to the seeds, allowed to obtain plants with longer stem length, more developed roots, larger and more intense coloration leaves than the control plants. The results encourage deeper studies to achieve the formulation of inoculums to use as a biofertilizer, which would replace chemical fertilizers or reduce their doses.


2021 ◽  
Vol 26 (4) ◽  
pp. 190
Author(s):  
Charlie Ester De Fretes ◽  
Donny Widianto ◽  
Yekti Asih Purwestri ◽  
Tri Rini Nuringtyas

Application of high levels of chemical fertilizers for optimal growth of sweet sorghum causes environmental degradation. Plant growth‐promoting bacteria have biotechnological importance because they can improve the growth and health of important agronomic plants. This study aimed to isolate, characterize, and identify endophytic bacteria associated with sweet sorghum (cv. KCS105), and also to study the inoculation effects of selected isolates on sorghum growth. In this study, 35 isolates were evaluated for their ability to support plant growth. The results showed that seven isolates were diazotrophic, six were capable of dissolving phosphate, six produced IAA and could detect ACC‐deaminase activity, and three inhibited the growth of pathogenic fungi. Nine isolates exhibiting mechanisms for promoting plant growth from the Alphaproteobacteria (Devosia), Firmicutes (Bacillus, Paenibacillus, Staphylococcus), and Actinobacteria (Microbacterium, Brachybacterium) phyla were identified. In addition, the Paenibacillus sp. BB7, Bacillus sp. PIB1B, and Bacillus sp. PLB1B isolates showed increasing effects on plant growth in greenhouse tests. Endophytic bacterial isolates which display plant growth‐promoting features can potentially be employed as biofertilizer agents. They may also address environmental damage problems resulting from the use of chemical fertilizers and pesticides.


2017 ◽  
Vol 71 (3) ◽  
pp. 195-200 ◽  
Author(s):  
Snezana Djordjevic ◽  
Dragana Stanojevic ◽  
Milka Vidovic ◽  
Violeta Mandic ◽  
Ivana Trajkovic

The standard technology of seed processing uses mainly chemical products. Recent researches showed that toxic materials from chemical fertilizers can be harmful to humans, animals and the environment. Currently the attention of researches is shifting away from chemical fertlizers and toward alternative that consumers perceive to be natural, Plant Growth Promoting bacteria (PGP). PGP bacteria could be a way to reduce chemical fertilizer doses. This was the reason to test the ability of Bacillus megaterium, Azotobacter chroococcum to produce hormone auxin (IAA). Bacterial strains were identified by PCR amplification and sequencing of the 16S rRNA gene. Indole-3-acetic acid (IAA) was detected and quantified by MRM experiment. This study conducted that maize seed inoculation with IAA from species mentioned above showed positive effects. They had statistically significantly higher root and steam height compared to control seedlings. Bacterial strains tested in this study may be recommended as PGP (Plant Growth Promoting) bacteria, due to their positive effects and eventually can be used to reduce chemical fertilizers doses.


2016 ◽  
pp. 25-31
Author(s):  
Farzana Diba ◽  
Santonu Kumar Sannyal ◽  
SM Sabbir Alam ◽  
M Anwar Hossain ◽  
Munawar Sultana

Arsenic (As) pollution in both soil and water is a global threat and challenge to us. Soil As contamination resulted in desolation of agricultural land and damaging human health via the food chain. Plant growth promoting bacteria (PGPB) enhance the ability of heavy metal/metalloid tolerance, increase biomass production in plant under adverse condition and also reduce the soil toxicity. This present study focuses on selection of the plant growth promoting trait within arsenite resistant bacteria, previously isolated from As contaminated soils of Faridpur district, Bangladesh. A total of 17 arsenite resistant bacteria belonging to 8 different genotypes comprising 6 different genera (Bacillus, Pseudomonas, Delftia, Wohlfahrtiimonas, Dietzia and Brevibacillus) were screened for their ability to produce plant growth promoting abilities such as indole acetic acid (IAA) production and phosphate solubilization (PS). Among 17 isolates, 15 93.75% (15/16) isolates produced IAA and 83.71% (12/14) isolates had the capacity to solubilize phosphate. Arsenite resistant Bacillus spp. were highly potent in both IAA production (33.33%) and phosphate solubilization (50%) followed by Pseudomonas spp. (40% IAA and 33.33% PS). High IAA production (91.5?g/ml) was exhibited by isolate Bacillus sp. A1b possessing a MICarsenite of 10 mM and maximum phosphate solubilization was observed by Bacillus sp. H2k. One of the arsenite resistant bacteria Detzia sp. H2f having 27 mM arsenite tolerance were able to produce IAA and showed maximum PS ability that was not previously reported. These isolates can be potential candidates for the enhancement of plant growth, provide protection of plants against As toxicity and be beneficial for sustainable agronomic production in As contaminated soils.Bangladesh J Microbiol, Volume 32, Number 1-2,June-Dec 2015, pp 25-31


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Raoudha Ferjani ◽  
Ramona Marasco ◽  
Eleonora Rolli ◽  
Hanene Cherif ◽  
Ameur Cherif ◽  
...  

In arid ecosystems environmental factors such as geoclimatic conditions and agricultural practices are of major importance in shaping the diversity and functionality of plant-associated bacterial communities. Assessing the influence of such factors is a key to understand (i) the driving forces determining the shape of root-associated bacterial communities and (ii) the plant growth promoting (PGP) services they provide. Desert oasis environment was chosen as model ecosystem where agriculture is possible by the microclimate determined by the date palm cultivation. The bacterial communities in the soil fractions associated with the root system of date palms cultivated in seven oases in Tunisia were assessed by culture-independent and dependent approaches. According to 16S rRNA gene PCR-DGGE fingerprinting, the shapes of the date palm rhizosphere bacterial communities correlate with geoclimatic features along a north-south aridity transect. Despite the fact that the date palm root bacterial community structure was strongly influenced by macroecological factors, the potential rhizosphere services reflected in the PGP traits of isolates screenedin vitrowere conserved among the different oases. Such services were exerted by the 83% of the screened isolates. The comparable numbers and types of PGP traits indicate their importance in maintaining the plant functional homeostasis despite the different environmental selection pressures.


Sign in / Sign up

Export Citation Format

Share Document