scholarly journals N-hydroxy-N'-(4-butyl-2-methylphenyl)-formamidine attenuates oxygen-glucose deprivation and reoxygenation-induced cerebral ischemia-reperfusion injury via regulation of microRNAs

2020 ◽  
Vol 19 (2) ◽  
pp. 303
2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Bingwu Zhong ◽  
Zhiping Hu ◽  
Jieqiong Tan ◽  
Tonglin Lu ◽  
Qiang Lei ◽  
...  

Cerebral ischemia-reperfusion injury plays an important role in the development of tissue injury after acute ischemic stroke. Finding effective neuroprotective agents has become a priority in the treatment of ischemic stroke. The Golgi apparatus (GA) is a pivotal organelle and its protection is an attractive target in the treatment of cerebral ischemia-reperfusion injury. Protective effects of Hsp20, a potential cytoprotective agent due to its chaperone-like activity and involvement in regulation of many vital processes, on GA were assessed in an ischemia-reperfusion injury model. Mouse neuroblastoma Neuro2a (N2a) cells were subjected to oxygen-glucose deprivation/reperfusion (OGDR) insult. OGDR induces Golgi fragmentation, apoptosis, and p115 cleavage in N2a cells. However, transfection with Hsp20 significantly attenuates OGDR-induced Golgi fragmentation and apoptosis. Hsp20 interacts with Bax, decreases FasL and Bax expression, and inhibits caspases 3 and p115 cleavage in N2a cells exposed to OGDR. Our data demonstrate that increased Hsp20 expression protects against OGDR-induced Golgi fragmentation and apoptosis, likely through interaction with Bax and subsequent amelioration of the OGDR-induced elevation in p115 cleavage via the Fas/FasL signaling pathway. This neuroprotective potential of Hsp20 against OGDR insult and the underlying mechanism will pave the way for its potential clinical application for cerebral ischemia-reperfusion related disorders.


2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Ying Jia ◽  
Lian Yi ◽  
Qianqian Li ◽  
Tingjiao Liu ◽  
Shanshan Yang

Abstract Background This study aimed to investigate the potential role and molecular mechanism of lncRNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) in cerebral ischemia/reperfusion injury. Results Using an oxygen-glucose deprivation/reoxygenation (OGD/R) cell model, we determined that the expression of MALAT1 was significantly increased during OGD/R. MALAT1 knockdown reversed OGD/R-induced apoptosis and ER stress. Mechanistically, MALAT1 promoted OGD/R-induced neuronal injury through sponging miR-195a-5p to upregulating high mobility group AT-hook1 (HMGA1). Conclusions Collectively, these data demonstrate the mechanism underlying the invovlvement of MALAT1 in cerebral ischemia/reperfusion injury, thus providing translational evidence that MALAT1 may serve as a novel biomarker and therapeutic target for ischemic stroke.


2020 ◽  
pp. 096032712095424
Author(s):  
Wenxiong Liu ◽  
Haikang Zhao ◽  
Yuqiang Su ◽  
Kefeng Wang ◽  
Jing Li ◽  
...  

Senescence marker protein 30 (SMP30) is a senescence marker molecule and identified as a calcium regulatory protein. Currently, SMP30 has emerged as a cytoprotective protein in a wide range of cell types. However, the role of SMP30 in regulating neuronal survival during cerebral ischemia/reperfusion injury remains unclear. In the present study, we aimed to investigate the biological function and regulatory mechanism of SMP30 on neuronal survival using a cellular model induced by oxygen-glucose deprivation/reoxygenation (OGD/R). The results showed that SMP30 expression was significantly decreased by OGD/R exposure in neurons. Functional experiments demonstrated that SMP30 overexpression significantly rescued the decreased cell viability and attenuated the apoptosis and reactive oxygen species generation in OGD/R-exposed neurons. By contrast, SMP30 knockdown exhibited the opposite effect. Mechanism research revealed that SMP30 overexpression contributed to the activation of nuclear factor erythroid 2-related factor (Nrf2)/antioxidant response element (ARE) signaling associated with downregulation of Kelch-like ECH-associated protein (Keap1). Keap1 overexpression or Nrf2 silencing significantly reversed SMP30-mediated neuroprotection against OGD/R-induced injury. Overall, these findings demonstrate that SMP30 overexpression protects neurons from OGD/R-induced apoptosis and oxidative stress by enhancing Nrf2/ARE antioxidant signaling via inhibition of Keap1. These data highlight the importance of the SMP30/Keap1/Nrf2/ARE signaling axis in regulating neuronal survival during cerebral ischemia/reperfusion injury.


2021 ◽  
pp. 096032712199603
Author(s):  
J Bai ◽  
P Jia ◽  
Y Zhang ◽  
K Wang ◽  
G Wu

Paraoxonase 2 (PON2) is a powerful antioxidant that mediates cell survival under oxidative stress; however, its protection neurons against cerebral ischemia-reperfusion injury-induced oxidative stress remains unclear. This study aimed to determine the precise regulating role of PON2 in neuronal survival under oxidative stress. An in vitro model of cerebral ischemia-reperfusion injury was used to assess the effect of PON2 on oxidative stress induced by oxygen–glucose deprivation/reoxygenation (OGD/R). Results showed that PON2 expression in neurons was decreased due to OGD/R exposure. A series of functional experiments revealed that upregulated PON2 improved OGD/R-impaired viability and attenuated OGD/R-induced increases in apoptosis and reactive oxygen species in neurons. Decreased PON2 expression enhanced neuronal sensitivity to OGD/R-induced injury. Overexpressed PON2 markedly enhanced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) in the nucleus and increased the levels of Nrf2-mediated transcriptional activity. Furthermore, PON2 enhanced the Nrf2 activation by modulating glycogen synthase kinase-3β (GSK-3β). Inhibition of GSK-3β substantially abrogated the PON2 knockdown-mediated suppression of Nrf2 activity. Notably, Nrf2 inhibition partially reversed the neuroprotective effects of PON2 overexpression in OGD/R-exposed neurons. These findings indicate that PON2 alleviates OGD/R-induced apoptosis and oxidative stress in neurons by potentiating Nrf2 activation via GSK-3β modulation. This study highlights the potential neuroprotective function of PON2 against cerebral ischemia-reperfusion injury.


2019 ◽  
Vol 22 (04) ◽  
pp. 122-130
Author(s):  
Rihab H Al-Mudhaffer ◽  
Laith M Abbas Al-Huseini ◽  
Saif M Hassan ◽  
Najah R Hadi

Sign in / Sign up

Export Citation Format

Share Document