n2a cells
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 49)

H-INDEX

25
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Yao Zhang ◽  
Jiazhao Xie ◽  
Yan-li Jiang ◽  
Shao-juan Yang ◽  
Hui Wei ◽  
...  

Abstract Background Elevated serum homocysteine (Hcy) is an independent risk factor of Alzheimer’s disease (AD). It has been reported that Hcy dramatically accelerates the aging of endothelial progenitor cells or endothelial cells. However, whether and how Hcy produces neuronal senescence is largely unknown. Methods Mouse neuroblastma 2a (N2a) cells were treated with Hcy, and senescence-associated β-galactosidase (SA-β-gal) staining was applied to assay senescence. Senescent markers and related proteins were examined by western blot, quantitative Polymerase Chain Reaction (qPCR), immunofluorescence staining. Methylation of promoter was assay by bisulfite sequencing PCR (BSP). Immunoprecipitation (IP) was applied to examine association between proteins. Rats were injected with homocysteine and examined neuronal senescence. Results In this study, we observed that Hcy significantly promoted the senescence of N2a cells with elevated β-catenin and Kelch like ECH-associated protein 1 (Keap1). Intriguingly, Hcy increased the interaction between Keap1 and Wilms tumor gene on X chromosome (WTX), but decreased β-catenin-WTX interaction simultaneously. Mechanistically, Hcy attenuated the methylation level of Keap1 promoter’s CqG island and activated the transcription of Keap1. While, slow degradation rate rather than transcriptional activation contributed to the high level of β-catenin. Hcy-increased Keap1 competed with β-catenin to bind to WTX. Knockdown of β-catenin and Keap1 both attenuated Hcy-induced senescence of N2a cells. Hcy-induced rats model also showed neuronal senescence in cortex along with elevated senescent markers. Conclusions Our data highlight a crucial role of Keap1-β-catenin pathway in Hcy-induced neuronal-like senescence and provide a promising target for AD treatment.


2021 ◽  
Vol 20 (11) ◽  
pp. 2261-2266
Author(s):  
Yanbin Hou ◽  
Zhongze Lou ◽  
Yunxin Ji ◽  
Liemin Ruan ◽  
He Gao

Purpose: To explore the effects of octreotide (OCT) on oxidative stress, inflammation and apoptosis in hypoxia/reoxygenation (H/R)-induced cerebral infarction.Methods: The in vitro model of cerebral infarction was established by treating N2A cells with hypoxia for 4 h and reoxygenation for 24 h. The viability of N2A cells was determined by CCK-8 assay. The cells were divided into 3 groups: control group, H/R group, and H/R+OCT group. The cells in H/R+OCT group were pretreated with OCT (60 ng/mL) before H/R treatment. The oxidative stress of N2A cells were assessed by determining the levels of superoxide dismutase (SOD), glutathione peroxidase (GSHPx), catalase (CAT), reactive oxygen species (ROS) and malondialdehyde (MDA). Inflammation of N2A cells was evaluated by evaluating the levels of TNF-α, IL-1β, IL-6, and IL-8, while the apoptosis of N2A cells was assessed by flow cytometry. Western blot analysis was used to determine the expression of Bcl-2, Bax, TLR4, MyD88, and NF-κB.Results: Octreotide treatment significantly reduced the level of oxidative stress. The inflammation of N2A cells caused by hypoxia/reoxygenation was inhibited by treatment with octreotide. Apoptosis of N2A cells was also inhibited by octreotide treatment. Hypoxia/reoxygenation activated TLR4/MyD88/NF-κB signaling pathway, while octreotide inhibits the activation of this pathway.Conclusion: The results reveal that octreotide inhibits hypoxia/reoxygenation-induced oxidative stress,as well as the inflammation, and apoptosis of N2A cells by inhibiting TLR4/MyD88/NF-κB signaling pathway. Thus, these findings may provide new insights into the treatment of cerebral infarction.


Author(s):  
Wei Wang ◽  
Xun-Hu Gu ◽  
Min Li ◽  
Zhi-Juan Cheng ◽  
Sheng Tian ◽  
...  

Abstract The nuclear factor kappa B (NF-κB) pathway and inhibitor of NF-κB kinase β (IKKβ) are involved in Alzheimer disease (AD) pathogenesis. This study explored the mechanisms underlying IKKβ-mediated Aβ aggregation and neuron regeneration in APP.PS1 mice. Adenoviral transduction particles were injected into the hippocampal CA1 region of the mice to knock down or inhibit target genes. Morris water maze was performed to evaluate the cognitive function of the mice. Aβ deposition was determined by histological examination. sh-IKKβ plasmids and microRNA (miR)-155-5p inhibitor were transfected into Aβ1-42-induced N2a cells. The expressions of AD-related proteins were detected by Western blot. The interaction between S-phase kinase-associated protein 2 (SKP2) and IKKβ was assessed by co-immunoprecipitation. IKKβ knockdown (KD) and miR-155-5p inhibition ameliorated cognitive impairment, improved neuron regeneration, and attenuated Aβ deposition in APP/PS1 mice. SKP2 KD aggravated cognitive impairment, inhibited neuron regeneration, and promoted Aβ deposition in the mice. SKP2 regulated the stability of IKKβ protein via ubiquitination. MiR-155-5p regulates Aβ deposition and the expression of Aβ generation-related proteins in N2a cells via targeting SKP2. These results indicate that the miR-155-5p/SKP2/IKKβ axis was critical for pathogenesis in this AD model and suggest the potential of miR-155-5p as a target for AD treatment.


2021 ◽  
Author(s):  
Fei Wang ◽  
Lianxia Guo ◽  
Zhengping Wu ◽  
Tianpeng Zhang ◽  
Dong Dong ◽  
...  

Abstract Temporal lobe epilepsy (TLE) is a common and intractable form of epilepsy. There is a strong need to better understand molecular events underlying TLE and to find novel therapeutic agents. Here we aimed to investigate the role of Clock gene and ferroptosis in regulating TLE. TLE model was established by treating mice with kainic acid (KA). Regulatory effects of Clock gene on KA-induced seizures and ferroptosis were evaluated using Clock knockout (Clock−/−) mice. mRNA and protein levels were determined by quantitative real-time PCR and western blotting, respectively. Ferroptosis was assessed by measuring the levels of iron, GSH and ROS. Transcriptional regulation was studied using a combination of luciferase reporter, mobility shift and chromatin immunoprecipitation (ChIP) assays. We found that Clock ablation exacerbated KA-induced seizures in mice, accompanied by enhanced ferroptosis in the hippocampus. Furthermore, Clock ablation reduced the hippocampal expression of GPX4 and PPAR-γ, two ferroptosis-inhibitory factors, in mice and in N2a cells. Moreover, Clock regulates diurnal expression of GPX4 and PPAR-γ in mouse hippocampus and rhythmicity in KA-induced seizures. Consistently, Clock overexpression up-regulated GPX4 and PPAR-γ, and protected against ferroptosis in N2a cells. In addition, based on luciferase reporter, mobility shift and ChIP assays, we uncovered that CLOCK protein trans-activated Gpx4 and Ppar-γ through specific binding to an E-box element in gene promoters. In conclusion, CLOCK protests against KA-induced seizures through promoting expression of GPX4 and PPAR-γ and inhibiting ferroptosis.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1567
Author(s):  
C. J. Urso ◽  
Heping Zhou

Elevated level of palmitic acid (PA), a long-chain saturated fatty acid (SFA), is lipotoxic to many different types of cells including Neuro-2a (N2a) neuroblastoma cells. CD36 is a multifunctional membrane glycoprotein that acts as a fatty acid translocase (FAT) facilitating the transport of long-chain free fatty acids (FFAs) into cells, serves a fatty acid (FA) sensing function in areas including taste buds and the proximal gut, and acts as a scavenger receptor that binds to many ligands, including FAs, collagen, oxidized low-density lipoproteins, and anionic phospholipids. However, the involvement of CD36 in FA uptake and PA lipotoxicity in N2a cells remains unclear. In this study, we examined FA uptake in BSA- and PA-treated N2a cells and investigated the involvement of CD36 in FA uptake and PA lipotoxicity in N2a cells. Our data showed that PA treatment promoted FA uptake in N2a cells, and that treatment with sulfo-N-succinimidyl oleate (SSO), a CD36 inhibitor, significantly decreased FA uptake in BSA- and PA-treated N2a cells, and ameliorated PA-induced decrease of cell viability, decrease of diploid cells, and increase of tetraploid cells. We also found that CD36 knockdown significantly decreased FA uptake in both BSA- and PA-treated cells as compared to their corresponding wild-type controls, and dramatically attenuated PA-induced cell cycle defects in N2a cells. Our data suggest that CD36 may play a critical role in FA uptake and PA lipotoxicity in N2a cells. CD36 may therefore represent a regulatory target against pathologies caused by excess FAs.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Li Zuo ◽  
Chunfang Dai ◽  
Lilin Yi ◽  
Zhifang Dong

AbstractParkinson’s disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra and diminished dopamine content in the striatum. Recent reports show that 7,8-dihydroxyflavone (DHF), a TrkB agonist, attenuates the α-synuclein deposition and ameliorates motor deficits. However, the underlying mechanism is unclear. In this study, we investigated whether autophagy is involved in the clearance of α-synuclein and the signaling pathway through which DHF exerts therapeutic effects. We found that the administration of DHF (5 mg/kg/day, i.p.) prevented the loss of dopaminergic neurons and improved motor functions in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD, whereas these protective effects of DHF were completely blocked by autophagy inhibitor chloroquine (CQ). Further in vitro studies showed that autophagy was inhibited in N2A cells treated with 1-methyl-4-phenylpyridinium (MPP+), as reflected by a significant decrease in the expressions of autophagy marker proteins (Beclin1 and LC3II) and an increase in the expression of autophagic flux marker p62. DHF restored the impaired autophagy to control level in MPP+-treated N2A cells by inhibiting the ERK-LKB1-AMPK signaling pathway. Taken together, these results demonstrate that DHF exerts therapeutic effects in MPTP/MPP+-induced neurotoxicity by inhibiting the ERK-LKB1-AMPK signaling pathway and subsequently improving impaired autophagy.


2021 ◽  
Vol 22 (16) ◽  
pp. 8898
Author(s):  
Ruiqing Lu ◽  
Yinan Jiang ◽  
Xianxin Lai ◽  
Shujie Liu ◽  
Litao Sun ◽  
...  

Ferroptosis, an iron-dependent form of programmed cell death, has excellent potential as an anti-cancer therapeutic strategy in different types of tumors, especially in RAS-mutated ones. However, the function of ferroptosis for inhibiting neuroblastoma, a common child malignant tumor with minimal treatment, is unclear. This study investigated the anti-cancer function of ferroptosis inducer Erastin or RSL3 in neuroblastoma N2A cells. Our results show that Erastin or RSL3 induces ROS level and cell death and, therefore, reduces the viability of RAS-proficient N2A cells. Importantly, inhibitors to ferroptosis, but not apoptosis, ameliorate the high ROS level and viability defect in Erastin- or RSL3-treated cells. In addition, our data also show that N2A cells are much more sensitive to ferroptosis inducers than primary mouse cortical neural stem cells (NSCs) or neurons. Moreover, a higher level of ROS and PARylation is evidenced in N2A, but not NSCs. Mechanically, ferritin heavy chain 1 (Fth), the ferroxidase function to oxidate redox-active Fe2+ to redox-inactive Fe3+, is likely responsible for the hypersensitivity of N2A to ferroptosis induction since its expression is lower in N2A compared to NSCs; ectopic expression of Fth reduces ROS levels and cell death, and induces expression of GPX4 and cell viability in N2A cells. Most importantly, neuroblastoma cell lines express a significantly low level of Fth than almost all other types of cancer cell lines. All these data suggest that Erastin or RSL3 induce ferroptosis cell death in neuroblastoma N2A cells, but not normal neural cells, regardless of RAS mutations, due to inadequate FTH. This study, therefore, provides new evidence that ferroptosis could be a promising therapeutic target for neuroblastoma.


2021 ◽  
Vol 12 ◽  
Author(s):  
Utpal Kumar Adhikari ◽  
Elif Sakiz ◽  
Xian Zhou ◽  
Umma Habiba ◽  
Sachin Kumar ◽  
...  

BackgroundPrevious reports identified proteins associated with ‘apoptosis’ following cross-linking PrPC with motif-specific anti-PrP antibodies in vivo and in vitro. The molecular mechanisms underlying this IgG-mediated neurotoxicity and the role of the activated proteins in the apoptotic pathways leading to neuronal death has not been properly defined. Previous reports implicated a number of proteins, including apolipoprotein E, cytoplasmic phospholipase A2, prostaglandin and calpain with anti-PrP antibody-mediated ‘apoptosis’, however, these proteins are also known to play an important role in allergy. In this study, we investigated whether cross-linking PrPC with anti-PrP antibodies stimulates a neuronal allergenic response.MethodsInitially, we predicted the allergenicity of the epitope sequences associated with ‘neurotoxic’ anti-PrP antibodies using allergenicity prediction servers. We then investigated whether anti-PrP antibody treatment of mouse primary neurons (MPN), neuroblastoma cells (N2a) and microglia (N11) cell lines lead to a neuronal allergenic response.ResultsIn-Silico studies showed that both tail- and globular-epitopes were allergenic. Specifically, binding regions that contain epitopes for previously reported ‘neurotoxic’ antibodies such as ICSM18 (146-159), ICSM35 (91-110), POM 1 (138-147) and POM 3 (95-100) lead to activation of allergenic related proteins. Following direct application of anti-PrPC antibodies on N2a cells, we identified 4 neuronal allergenic-related proteins when compared with untreated cells. Furthermore, we identified 8 neuronal allergenic-related proteins following treatment of N11 cells with anti-PrPC antibodies prior to co-culture with N2a cells when compared with untreated cells. Antibody treatment of MPN or MPN co-cultured with antibody-treated N11 led to identifying 10 and 7 allergenic-related proteins when compared with untreated cells. However, comparison with 3F4 antibody treatment revealed 5 and 4 allergenic-related proteins respectively. Of importance, we showed that the allergenic effects triggered by the anti-PrP antibodies were more potent when antibody-treated microglia were co-cultured with the neuroblastoma cell line. Finally, co-culture of N2a or MPN with N11-treated with anti-PrP antibodies resulted in significant accumulation of NO and IL6 but not TNF-α in the cell culture media supernatant.ConclusionsThis study showed for the first time that anti-PrP antibody binding to PrPC triggers a neuronal hypersensitivity response and highlights the important role of microglia in triggering an IgG-mediated neuronal hypersensitivity response. Moreover, this study provides an important impetus for including allergenic assessment of therapeutic antibodies for neurodegenerative disorders to derive safe and targeted biotherapeutics.


2021 ◽  
Vol 22 (14) ◽  
pp. 7620
Author(s):  
Ioannis Tsialtas ◽  
Achilleas Georgantopoulos ◽  
Maria E. Karipidou ◽  
Foteini D. Kalousi ◽  
Aikaterini G. Karra ◽  
...  

Estrogens are steroid hormones that play a crucial role in the regulation of the reproductive and non-reproductive system physiology. Among non-reproductive systems, the nervous system is mainly affected by estrogens due to their antioxidant, anti-apoptotic, and anti-inflammatory activities, which are mediated by membranous and nuclear estrogen receptors, and also by non-estrogen receptor-associated estrogen actions. Neuronal viability and functionality are also associated with the maintenance of mitochondrial functions. Recently, the localization of estrogen receptors, especially estrogen receptor beta, in the mitochondria of many types of neuronal cells is documented, indicating the direct involvement of the mitochondrial estrogen receptor beta (mtERβ) in the maintenance of neuronal physiology. In this study, cell lines of N2A cells stably overexpressing a mitochondrial-targeted estrogen receptor beta were generated and further analyzed to study the direct involvement of mtERβ in estrogen neuroprotective antioxidant and anti-apoptotic actions. Results from this study revealed that the presence of estrogen receptor beta in mitochondria render N2A cells more resistant to staurosporine- and H2O2-induced apoptotic stimuli, as indicated by the reduced activation of caspase-9 and -3, the increased cell viability, the increased ATP production, and the increased resistance to mitochondrial impairment in the presence or absence of 17-β estradiol (E2). Thus, the direct involvement of mtERβ in antioxidant and anti-apoptotic activities is documented, rendering mtERβ a promising therapeutic target for mitochondrial dysfunction-associated degenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document