New aspects of power grid facilities personnel workplaces electromagnetic environment

Author(s):  
Nina B. Rubtsova ◽  
Sergey Yu. Perov ◽  
Olga V. Belaya ◽  
Tatiana A. Konshina

Introduction. Electromagnetic safety of power grid facilities staff requires the exclusion of electromagnetic fields (EMF) harmful effects. EMF is evaluated by 50 Hz electric and magnetic fields (EF and MF) values in the framework of working conditions special assessment, and very rarely the analysis of the electromagnetic environment (EME) is carried out in depth. The aim of the study - EME hygienic assessment of power grid EHV facilities personnel workplace with adequate 50 Hz EF and MF levels evaluation as well as the analysis of EF and MF in the frequency range from 5 Hz to 500 Hz amplitude-frequency characteristics. Materials and methods. 50 Hz EF and MF values assessment was carried out on open switchgears (S) of substations and within sanitary breaks of 500 and 750 kV overhead power transmission lines (OTL). Measurements along to OTL trasses was performed using matrix-based method. Measurements and analysis of EF and MF values in 5-500 Hz frequency range amplitude-frequency characteristics were performed in the territory of 500 and 750 kV S. Results. Power frequency 50 Hz measurements results at 500 and 750 kV S ground-level personnel workplaces showed the presence of an excess of permissible limit values by EF intensity and the absence of an excess by MF. The measured EF values within 500 and 750 kV OTL sanitary gaps require limiting the working time of linemen due to the excess of the hygienic norms for full work shift, while the MP levels were almost completely within the standard values for persons not occupationally connected with electrical installations maintenance. MF and EE frequency range from 50 Hz to 500 Hz spectral characteristics analysis showed that 3rd harmonic percentage does not exceed 2.5% for EF and 6% for MF of the main level, the level of the 5th harmonic does not exceed 1% for EF and 3.5% for MF, the level of the 7th harmonic does not exceed 0.2% for EF and 0.8% for MF. These data show despite its low levels the contribution of MF different harmonics in a possible adverse impact on humane than EF corresponding harmonics. Conclusions. There was the confirmation of the previously justified use of the "matrix" scheme for of EF and MF values measurement along OTL routes. The relevance of to EF and MF all frequency components expos ure assessing possible health risk in extremely high voltage S territories and under OTL, based on international recommendations due to the lack of sanitary regulations in the Russian Federation for >50 Hz-30 kHz EF and MF, is shown.

2020 ◽  
Author(s):  
Tatiana Výbošťoková ◽  
Michal Švanda ◽  
Zdeněk Němeček

<p>Eruptive events on the Sun interacts with the magnetosphere and can affect even the Earth-bound structures such as power transmission networks via geomagnetically induced electric currents (GICs). We quantify the geomagnetic activity by the K-index computed from local measurements of the geomagnetic field and investigate its effects on the Czech electric power grid represented as disturbances recorded in the maintenance logs of the power network operators in course of last 12 years. In data sets recording the disturbances on high and very high voltage power lines, we found a statistically significant increase of anomaly rates within tens of days around maxima of a geomagnetic activity compared to the adjacent activity minima. Moreover, we modeled GICs for two (east-west and north-south oriented) high-voltage transmission lines in the Czech Republic and found surprisingly high values of currents, in the order of tens of amperes. Based on in-situ observations, we study propagation and properties of the largest CMEs and their relation to the disturbances in the transmission networks of the Central European countries. Our results provide an evidence that GICs may affect the occurrence rate of anomalies registered on power-grid equipment even in the mid-latitude countries.</p>


2014 ◽  
Vol 1022 ◽  
pp. 165-168
Author(s):  
Pei Lin Li ◽  
Si Qi Lv ◽  
Tian Le Li

With the increasing development of China's power transmission project and social awareness of environmental protection, the problem of electromagnetic environment of transmission line has been widely concerned. This paper studies the electromagnetic environment around the transmission lines, analyzes the calculation method of power frequency electromagnetic field and the measures to reduce the power frequency electromagnetic field.


2020 ◽  
Vol 213 ◽  
pp. 03036
Author(s):  
Yixuan Weng ◽  
Weizhe Ma ◽  
EnYan Xie ◽  
Hui Qi ◽  
Zhenxing Liu ◽  
...  

In theory, the cross section is the minimum cut set in the network. For the actual power grid, the transmission cross section is a collection of transmission lines between different regions, which is mainly used for power transmission to achieve the purpose of generating load balance. In this paper, a power grid zoning algorithm is proposed based on the topological structure characteristics and current operation state of the power grid, and the key transmission sections can be directly obtained without depending on the calculation of safety and stability margin. A practical system state partition model and key section sorting method are introduced, and a set of automatic identification method flow of key transmission sections of the system is established by searching for electrical betweenness. The importance of the transmission section is quantitatively evaluated from three angles: the margin from the stability limit, the hub position in the current power flow state, and the impact on the power grid after the power cut-off. The evaluation results can be used as a Reference for decision-making in the planning and reconstruction of the transmission section, safety monitoring, protection configuration, etc.


2021 ◽  
Vol 11 (1) ◽  
pp. 79-90
Author(s):  
Yong Chen ◽  
Peng Li ◽  
Huan Wang ◽  
Wenping Ren ◽  
Min Cao

Accurately forecasting the icing load on overhead power transmission lines is an important issue to ensure the security and reliability of the power grid. A multi-scale time series phase-space reconstruction and regression model for icing load prediction is proposed in this paper to treat the non-stationary, nonlinear, and intermittent volatility of power line icing load data. Those is motivated by the traditional icing load prediction models having many disadvantages in the forecasting accuracy, as well as the casualness of the parameters selected. Firstly, the icing load data are decomposed into a multi-scale time series of intrinsic model function (IMF) components with stability by using the ensemble empirical mode decomposition (EEMD), which can reduce the interactions between different types of feature information. Secondly, phase-space reconstruction (PSR) theory is applied using the mutual information and the false nearest neighbor to determine the optimal delay time and embedding dimension of each IMF component. Thirdly, considering the characteristics of each IMF component, different kernel functions and optimization parameters are selected to establish the prediction model based support vector regression (SVR). Finally, according to the load prediction results, fuzzy reasoning method was used to determine the risk status of transmission line towers in this paper. Upon experimentally evaluating the validity of the model using related transmission lines of the Yunnan Power Grid, it is shown that this method could predict the real-time icing load on overhead power lines, obtaining better regression performance. This model could be used on power transmission and distribution systems for deicing and maintenance decisions.


2011 ◽  
Vol 128-129 ◽  
pp. 1452-1455 ◽  
Author(s):  
Xin Rui Zhao ◽  
Tie Bing Lu ◽  
Yu Hong Dong

Based on the technology of virtual instrument, a set of measurement system of the total electric field on the ground level under HVDC transmission lines is developed. After the hardware and software system are built up, some tests are made in laboratory to show the validity of the system. Finally, experiment results are given and analyzed. The developed measurement system can be used to measure the total electric field on the ground level under HVDC transmission lines, and can provide support for the evaluation of the electromagnetic environment of the HVDC transmission lines.


2021 ◽  
pp. 21-26
Author(s):  
V.V. Trufanov ◽  
P.S. Drachev ◽  
V.V. Khanaev

he paper presents an analysis of the current state of the Unified Energy System (UES) of Russia, which aims to identify "weak points," regional shortage and excess energy systems, locations of the electricity consumption growth, and seeks to determine the technical potential of the power grid for electricity transmission. This analysis relies on the models developed for optimization in terms of the maximum excess capacity for the entire Unified Energy System of Russia and for individual regions of the country in the context of the existing mix of generating capacity and cross-regional structure of the power grid. Calculations were made for the conditions corresponding to the reported performance of the Unified Energy System of Russia in 2020. The cross-regional power grid of the Unified Energy System of Russia is capable of covering the capacity needs of all the country's power systems, and almost everywhere has a significant available transfer capability of power transmission lines.


2014 ◽  
Vol 521 ◽  
pp. 850-854 ◽  
Author(s):  
Qian Han ◽  
Asifujiang Abudureyimu

China's wind power market development is set to continue its growth trend of 2011. The newly added installed capacity will be in the range of 15-18GW and is expected to reach approximately 18GW. By 2015, the installed wind power capacity will reach 100GW. The percentage of decentralized wind power will further increase, but large-scale development and land-based wind power development will still be the focus, while the ratio of decentralized wind power has the potential to reach a maximum of 30%. As power grid corporations continue to improve their ultra-high voltage power transmission lines, intelligent power grids and other infrastructure, the power grids' ability to absorb wind power electricity on a largescale, and the scale of cross-region wind power transmission will increase, with the wind power grid-connection rate also significantly increase. The wind power manufacturing industry has entered a low-profit era; competition will intensify, the market will become more mature, and wind power manufacturers will face greater market challenges. However, the wind power industry's maturity and lowering costs have enhanced wind power's competitiveness compared to traditional energy sources. Wind power has become a highstrength emerging power supply technology and its contribution to China's electricity mix will gradually increase.


Sign in / Sign up

Export Citation Format

Share Document