Effect of framework material and vertical misfit on stress distribution in implant-supported partial prosthesis under load application: 3-D finite element analysis

2013 ◽  
Vol 71 (5) ◽  
pp. 1243-1249 ◽  
Author(s):  
Ataís Bacchi ◽  
Rafael Leonardo Xediek Consani ◽  
Marcelo Ferraz Mesquita ◽  
Mateus Bertolini Fernandes dos Santos
2021 ◽  
Vol 13 (2) ◽  
pp. 57-61
Author(s):  
Alireza Izadi ◽  
Fariboorz Vafaie ◽  
Armaghan Shahbazi ◽  
Mohamad Taghi Mokri vala

Background: This finite element analysis (FEA) evaluated stress distribution in implant-supported overdenture (ISO) and peri-implant bone using one extracoronal (ball) and two intracoronal (locator and Zest Anchor Advanced Generation (ZAAG)) attachment systems. Methods: In this in vitro study, the mandible was modelled in the form of an arc-shaped bone block with 33 mm height and 8 mm width. Two titanium implants were modelled at the site of canine teeth, and three attachments (ZAGG, locator, and ball) were placed over them. Next, 100 N load was applied at 90° and 30° angles from the molar site of each quadrant to the implants. The stress distribution pattern in the implants and the surrounding bone was analyzed, and the von Mises stress around the implants and in the crestal bone was calculated. Results: While minimum stress in peri-implant bone following load application at 30° angle was noted in the mesial point of the locator attachment, maximum stress was recorded at the distal point of the ball attachment following load application at 90° angle. Maximum stress around the implant following load application at 90° angle was noted in the lingual point of the ball attachment while minimum stress was recorded in the lingual point of the locator attachment following load application at 90° angle. Conclusions: According to the results, the locator attachment is preferred to the ZAAG attachment, and the ball attachment should be avoided if possible.


2021 ◽  
Vol 11 (3) ◽  
pp. 1220
Author(s):  
Azeem Ul Yaqin Syed ◽  
Dinesh Rokaya ◽  
Shirin Shahrbaf ◽  
Nicolas Martin

The effect of a restored machined hybrid dental ceramic crown–tooth complex is not well understood. This study was conducted to determine the effect of the stress state of the machined hybrid dental ceramic crown using three-dimensional finite element analysis. Human premolars were prepared to receive full coverage crowns and restored with machined hybrid dental ceramic crowns using the resin cement. Then, the teeth were digitized using micro-computed tomography and the teeth were scanned with an optical intraoral scanner using an intraoral scanner. Three-dimensional digital models were generated using an interactive image processing software for the restored tooth complex. The generated models were imported into a finite element analysis software with all degrees of freedom concentrated on the outer surface of the root of the crown–tooth complex. To simulate average occlusal load subjected on a premolar a total load of 300 N was applied, 150 N at a buccal incline of the palatal cusp, and palatal incline of the buccal cusp. The von Mises stresses were calculated for the crown–tooth complex under simulated load application was determined. Three-dimensional finite element analysis showed that the stress distribution was more in the dentine and least in the cement. For the cement layer, the stresses were more concentrated on the buccal cusp tip. In dentine, stress was more on the cusp tips and coronal 1/3 of the root surface. The conventional crown preparation is a suitable option for machined polymer crowns with less stress distribution within the crown–tooth complex and can be a good aesthetic replacement in the posterior region. Enamic crowns are a good viable option in the posterior region.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1654
Author(s):  
Poojitha Vurtur Badarinath ◽  
Maria Chierichetti ◽  
Fatemeh Davoudi Kakhki

Current maintenance intervals of mechanical systems are scheduled a priori based on the life of the system, resulting in expensive maintenance scheduling, and often undermining the safety of passengers. Going forward, the actual usage of a vehicle will be used to predict stresses in its structure, and therefore, to define a specific maintenance scheduling. Machine learning (ML) algorithms can be used to map a reduced set of data coming from real-time measurements of a structure into a detailed/high-fidelity finite element analysis (FEA) model of the same system. As a result, the FEA-based ML approach will directly estimate the stress distribution over the entire system during operations, thus improving the ability to define ad-hoc, safe, and efficient maintenance procedures. The paper initially presents a review of the current state-of-the-art of ML methods applied to finite elements. A surrogate finite element approach based on ML algorithms is also proposed to estimate the time-varying response of a one-dimensional beam. Several ML regression models, such as decision trees and artificial neural networks, have been developed, and their performance is compared for direct estimation of the stress distribution over a beam structure. The surrogate finite element models based on ML algorithms are able to estimate the response of the beam accurately, with artificial neural networks providing more accurate results.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Xiaodong He ◽  
Christopher-Denny Matte ◽  
Tsz-Ho Kwok

AbstractThe paper presents a novel manufacturing approach to fabricate origami based on 3D printing utilizing digital light processing. Specifically, we propose to leave part of the model uncured during the printing step, and then cure it in the post-processing step to set the shape in a folded configuration. While the cured regions in the first step try to regain their unfolded shape, the regions cured in the second step attempt to keep their folded shape. As a result, the final shape is obtained when both regions’ stresses reach equilibrium. Finite element analysis is performed in ANSYS to obtain the stress distribution on common hinge designs, demonstrating that the square-hinge has a lower maximum principal stress than elliptical and triangle hinges. Based on the square-hinge and rectangular cavity, two variables—the hinge width and the cavity height—are selected as principal variables to construct an empirical model with the final folding angle. In the end, experimental verification shows that the developed method is valid and reliable to realize the proposed deformation and 3D development of 2D hinges.


Sign in / Sign up

Export Citation Format

Share Document