Cardiac sparing with proton therapy in consolidative radiation therapy for Hodgkin lymphoma

2010 ◽  
Vol 51 (8) ◽  
pp. 1559-1562 ◽  
Author(s):  
Bradford S. Hoppe ◽  
Stella Flampouri ◽  
Zuofeng Li ◽  
Nancy P. Mendenhall
Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3744
Author(s):  
Pierre Loap ◽  
Ludovic De Marzi ◽  
Alfredo Mirandola ◽  
Remi Dendale ◽  
Alberto Iannalfi ◽  
...  

Consolidative radiation therapy for early-stage Hodgkin lymphoma (HL) improves progression-free survival. Unfortunately, first-generation techniques, relying on large irradiation fields, were associated with an increased risk of secondary cancers, and of cardiac and lung toxicity. Fortunately, the use of smaller target volumes combined with technological advances in treatment techniques currently allows efficient organs-at-risk sparing without altering tumoral control. Recently, proton therapy has been evaluated for mediastinal HL treatment due to its potential to significantly reduce the dose to organs-at-risk, such as cardiac substructures. This is expected to limit late radiation-induced toxicity and possibly, second-neoplasm risk, compared with last-generation intensity-modulated radiation therapy. However, the democratization of this new technique faces multiple issues. Determination of which patient may benefit the most from proton therapy is subject to intense debate. The development of new effective systemic chemotherapy and organizational, societal, and political considerations might represent impediments to the larger-scale implementation of HL proton therapy. Based on the current literature, this critical review aims to discuss current challenges and controversies that may impede the larger-scale implementation of mediastinal HL proton therapy.


2021 ◽  
Vol 10 ◽  
Author(s):  
Xue Sha ◽  
Jinghao Duan ◽  
Xiutong Lin ◽  
Jian Zhu ◽  
Ruohui Zhang ◽  
...  

ObjectiveWhole lung irradiation (WLI) plays a crucial role in local control in pediatric patients with lung metastases and improves patient survival. The intention of this research was to explore the advantage of cardiac sparing between photons and protons during WLI. We also propose a new solution for cardiac sparing with proton techniques.MethodsEleven patients with pediatric tumors and pulmonary metastasis treated with 12 Gy WLI (all received volumetric-modulated arc therapy (VMAT)) in our institute between 2010 and 2019 were retrospectively selected. Each patient was replanned with intensity-modulated radiation therapy (IMRT), helical tomotherapy (HT), and two intensity-modulated proton radiotherapy (IMPT) plans (IMPT-1 and IMPT-2). IMPT-1 considered the whole lung as the planning target volume (PTV), utilizing the anteroposterior technique (0/180°). IMPT-2 was a new proton solution that we proposed in this research. This approach considered the unilateral lung as the PTV, and 3 ipsilateral fields were designed for each lung. Then, IMPT-2 was generated by summing two unilateral lung plans. The primary objective was to obtain adequate coverage (95% of the prescription dose to the PTV) while maximally sparing the dose to the heart. The PTV coverage, conformity index (CI), homogeneity index (HI), and dose–volume statistics of the heart and substructures were assessed by means of the averages of each comparison parameter.ResultsAll treatment techniques achieved the target volume coverage required by clinical practice. HT yielded the best coverage and homogeneity for the target structure compared with other techniques. The CI from IMRT was excellent. For photon radiation therapy, the HT plan afforded superior dose sparing for the V5, V6, V7, V8, and Dmean of the heart and Dmean of the right ventricle (RV). IMRT displayed the most notable dose reductions in the V9, V10, V11, and V12 of the heart and Dmean of the right atrium (RA). The VMAT plan was the least effective on the heart and substructures. However, compared with photon radiation therapy, IMPT-1 did not show an advantage for heart protection. Interestingly, IMPT-2 provided significant superiority in cardiac sparing, including maximum dose sparing for the V5, V6, V7, V8, V9 and Dmean of the heart and Dmean of the RA, RV, left atrium (LA) and left ventricle (LV) compared to all other techniques.ConclusionsConsidering the complex anatomical relation between target volumes and organs at risk (OARs), IMPT can provide a dose advantage for organs located outside of the target area rather than within or surrounding the area. It is hoped that advances in proton therapy (PT) plan design will lead to further improvements in radiotherapy approaches and provide the best treatment choice for individual patients.


2019 ◽  
Vol 20 (2) ◽  
pp. 7-12 ◽  
Author(s):  
Steve Braunstein ◽  
Li Wang ◽  
Wayne Newhauser ◽  
Todd Tenenholz ◽  
Yi Rong ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1549
Author(s):  
Han Gyul Yoon ◽  
Yong Chan Ahn ◽  
Dongryul Oh ◽  
Jae Myoung Noh ◽  
Seung Gyu Park ◽  
...  

Purpose: To report the early clinical outcomes of combining intensity-modulated radiation therapy (IMRT) and intensity-modulated proton therapy (IMPT) in comparison with IMRT alone in treating oropharynx cancer (OPC) patients. Materials and Methods: The medical records of 148 OPC patients who underwent definitive radiotherapy (RT) with concurrent systemic therapy, from January 2016 till December 2019 at Samsung Medical Center, were retrospectively reviewed. During the 5.5 weeks’ RT course, the initial 16 (or 18) fractions were delivered by IMRT in all patients, and the subsequent 12 (or 10) fractions were either by IMRT in 81 patients (IMRT only) or by IMPT in 67 (IMRT/IMPT combination), respectively, based on comparison of adaptive re-plan profiles and availability of equipment. Propensity-score matching (PSM) was done on 76 patients (38 from each group) for comparative analyses. Results: With the median follow-up of 24.7 months, there was no significant difference in overall survival and progression free survival between groups, both before and after PSM. Before PSM, the IMRT/IMPT combination group experienced grade ≥ 3 acute toxicities less frequently: mucositis in 37.0% and 13.4% (p < 0.001); and analgesic quantification algorithm (AQA) in 37.0% and 19.4% (p = 0.019), respectively. The same trends were observed after PSM: mucositis in 39.5% and 15.8% (p = 0.021); and AQA in 47.4% and 21.1% (p = 0.016), respectively. In multivariate logistic regression, grade ≥ 3 mucositis was significantly less frequent in the IMRT/IMPT combination group, both before and after PSM (p = 0.027 and 0.024, respectively). AQA score ≥ 3 was also less frequent in the IMRT/IMPT combination group, both before and after PSM (p = 0.085 and 0.018, respectively). Conclusions: In treating the OPC patients, with comparable early oncologic outcomes, more favorable acute toxicity profiles were achieved following IMRT/IMPT combination than IMRT alone.


2014 ◽  
Vol 9 (3) ◽  
pp. 203-211 ◽  
Author(s):  
Michael S. Rutenberg ◽  
Stella Flampouri ◽  
Bradford S. Hoppe

2018 ◽  
Vol 101 (3) ◽  
pp. 530-540 ◽  
Author(s):  
Chelsea C. Pinnix ◽  
Laura Cella ◽  
Therese Y. Andraos ◽  
Zeina Ayoub ◽  
Sarah A. Milgrom ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document