The Demonstration of Bone and Cartilage Remodelling Using Alcian Blue and Hematoxylin

1988 ◽  
Vol 63 (1) ◽  
pp. 59-63 ◽  
Author(s):  
D. C. J. Sayers ◽  
G. Volpin ◽  
G. Bentley
Keyword(s):  
Cartilage ◽  
2020 ◽  
pp. 194760352093453
Author(s):  
Katarzyna Styczynska-Soczka ◽  
Anish K. Amin ◽  
A. Hamish W. Simpson ◽  
Andrew C. Hall

Objective Articular cartilage is incapable of effective repair following injury or during osteoarthritis. While there have been developments in cartilage repair technologies, there is a need to advance biologically relevant models for preclinical testing of biomaterial and regenerative therapies. This study describes conditions for the effective ex vivo culture of the whole human femoral head. Design Fresh, viable femoral heads were obtained from femoral neck fractures and cultured for up to 10 weeks in (a) Dulbecco’s modified Eagle’s medium (DMEM); (b) DMEM + mixing; (c) DMEM + 10% human serum (HS); (d) DMEM + 10% HS + mixing. The viability, morphology, volume, and density of fluorescently labelled in situ chondrocytes and cartilage surface roughness were assessed by confocal microscopy. Cartilage histology was studied for glycosaminoglycan content using Alcian blue and collagen content using picrosirius red. Results Chondrocyte viability remained at >95% in DMEM + 10% HS. In DMEM alone, viability remained high for ~4 weeks and then declined. For the other conditions, superficial zone chondrocyte viability fell to <35% at 10 weeks with deeper zones being relatively unaffected. In DMEM + 10% HS at 10 weeks, the number of chondrocytes possessing cytoplasmic processes increased compared with DMEM ( P = 0.017). Alcian blue labeling decreased ( P = 0.02) and cartilage thinned ( P ≤ 0.05); however, there was no change to surface roughness, chondrocyte density, chondrocyte volume, or picrosirius red labeling ( P > 0.05). Conclusions In this ex vivo model, chondrocyte viability was maintained in human femoral heads for up to 10 weeks in culture, a novel finding not previously reported. This human model could prove invaluable for the exploration, development, and assessment of preclinical cartilage repair and regenerative therapies.


2002 ◽  
Vol 50 (8) ◽  
pp. 1039-1047 ◽  
Author(s):  
Emma Kavanagh ◽  
Anne C. Osborne ◽  
Doreen E. Ashhurst ◽  
Andrew A. Pitsillides

Changes in glycosaminoglycan (GAG) content and distribution are vital for joint development. However, their precise character has not been established. We have used immunohistochemistry (IHC) and “critical electrolyte” Alcian blue staining to assess such changes in developing chick and rabbit joints. IHC showed chondroitin sulfate labeling in chick epiphyseal cartilage but not in interzones. In contrast, prominent labeling for keratan sulfate (KS) was restricted to chick cartilage–interzone interfaces. In rabbit knees, KS labeling was also prominent at presumptive cavity borders, but weak in interzone and cartilage. Selective pre-digestion produced appropriate loss of label and undersulfated KS was undetectable. Quantification of Alcian blue staining by scanning and integrating microdensitometry showed prominent hyaluronan-like (HA-like) interzone staining, with chondroitin sulfate and weaker KS staining restricted to epiphyseal cartilage. Hyaluronidase decreased HA-like staining in the interzone. Surprisingly, keratanases also reduced HA-like but not sulfated GAG (sGAG-like) staining in the interzone. Chondroitinase ABC had little effect on HA-like staining but decreased sGAG staining in all regions. Rabbit joints also showed HA-like but not KS staining in the interzone and strong chondroitin sulfate-like staining in epiphyseal cartilage. Our findings show restricted KS distribution in the region close to the presumptive joint cavity of developing chick and rabbit joints. Alcian blue staining does not detect this moiety. Therefore, it appears that although histochemistry allows relatively insensitive quantitative assessment of GAGs, IHC increases these detection limits. This is particularly evident for KS, which exhibits immunolabeling patterns in joints from different species that is consistent with a conserved functional role in chondrogenesis.


2016 ◽  
Vol 5 (1) ◽  
pp. 19
Author(s):  
Muhammad Ja’far Luthfi

<p>Skeletal staining is an important method in anatomical study. The aim of the research was to develop staining and clearing method of Reptilian skeleton using Alizarin Red S-Alcian Blue. The specimen were eviscerated, fixed, stained, cleared, and keep in glycerine solution. This modified double-staining has successfully stain bone and cartilage of Reptilian.</p>


Author(s):  
R. S. Hannah ◽  
T. H. Rosenquist

Developing blood vessels in the rat central nervous system exhibit several unusual luminal features. Hannah (1975) used high voltage electron microscopy to demonstrate numerous ridges of endothelium, some near junctional complexes. The ridges produced troughs (which may appear as depressions) in the endothelial surface. In some areas ridges extended over the troughs, removing them from direct contact with the luminal surface. At no time were the troughs observed to penetrate the basal laminae. Fingerlike projections also extended into the lumina.To determine whether any chemical specializations accompanied the unusual morphological features of the luminal surface, we added 0.1% Alcian blue (Behnke and Zelander, 1970) to the 3% glutaraldehyde perfusate (cacodylate buffer, pH 7.4). After Alcian blue had reacted with the luminal glycocalyces, the dye was dissociated with MgCl2 via critical electrolyte concentration method of Scott and Dorling (1965). When these methods are applied together, it is possible to differentiate mucopolysaccharides (glycosaminoglycans or GAG) with the electron microscope.


2003 ◽  
Vol 70 ◽  
pp. 125-133 ◽  
Author(s):  
Tim E. Cawston ◽  
Jenny M. Milner ◽  
Jon B. Catterall ◽  
Andrew D. Rowan

We have investigated proteinases that degrade cartilage collagen. We show that pro-inflammatory cytokines act synergistically with oncastatin M to promote cartilage collagen resorption by the up-regulation and activation of matrix metalloproteinases (MMPs). The precise mechanisms are not known, but involve the up-regulation of c-fos, which binds to MMP promoters at a proximal activator protein-1 (AP-1) site. This markedly up-regulates transcription and leads to higher levels of active MMP proteins.


1989 ◽  
Vol 16 (1) ◽  
pp. 177-186 ◽  
Author(s):  
Fernando Ortiz Monasterio ◽  
Ernesto J. Ruas

2019 ◽  
Vol 70 (2) ◽  
Author(s):  
Gianni Belcaro ◽  
Beatrice Feragalli ◽  
Umberto Cornelli ◽  
Roberto Cotellese ◽  
Shu Hu ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document