Mapping the Receptor Binding Domain of Interleukin-1 Beta by Means of Binding Studies Using Overlapping Sequence Fragments: Why did it Fail?

1991 ◽  
Vol 11 (1-4) ◽  
pp. 275-282 ◽  
Author(s):  
U. R. Joss ◽  
I. Schmidli ◽  
K. Vosbeck
Author(s):  
Tobias Bierig ◽  
Gabriella Collu ◽  
Alain Blanc ◽  
Emiliya Poghosyan ◽  
Roger. M. Benoit

Abstract2019-nCoV is the causative agent of the serious, still ongoing, worldwide COVID-19 pandemic. High quality recombinant virus proteins are required for research related to the development of vaccines and improved assays, and to the general understanding of virus action. The receptor-binding domain (RBD) of the 2019-nCoV spike (S) protein contains disulfide bonds and N-linked glycosylations, therefore, it is typically produced by secretion. Here, we describe a construct and protocol for the expression and purification of yellow fluorescent protein (YFP) labeled 2019-nCoV spike RBD. The fusion protein, in the vector pcDNA 4/TO, comprises an N-terminal interferon alpha 2 (IFNα2) signal peptide, an eYFP, a FLAG-tag, a human rhinovirus 3C protease cleavage site, the RBD of the 2019-nCoV spike protein and a C-terminal 8x His-tag. We stably transfected HEK 293 cells. Following expansion of the cells, the fusion protein was secreted from adherent cells into serum-free medium. Ni-NTA IMAC purification resulted in very high protein purity, based on analysis by SDS-PAGE. The fusion protein was soluble and monodisperse, as confirmed by size-exclusion chromatography (SEC) and negative staining electron microscopy. Deglycosylation experiments confirmed the presence of N-linked glycosylations in the secreted protein. Complex formation with the peptidase domain of human angiotensin-converting enzyme 2 (ACE2), the receptor for the 2019-nCoV spike RBD, was confirmed by SEC, both for the YFP-fused spike RBD and for spike RBD alone, after removal of YFP by proteolytic cleavage. Possible applications for the fusion protein include binding studies on cells or in vitro, fluorescent labeling of potential virus-binding sites on cells, the use as an antigen for immunization studies or as a tool for the development of novel virus- or antibody-detection assays.


Author(s):  
Tobias Bierig ◽  
Gabriella Collu ◽  
Alain Blanc ◽  
Emiliya Poghosyan ◽  
Roger M. Benoit

2019-nCoV is the causative agent of the serious, still ongoing, worldwide coronavirus disease (COVID-19) pandemic. High quality recombinant virus proteins are required for research related to the development of vaccines and improved assays, and to the general understanding of virus action. The receptor-binding domain (RBD) of the 2019-nCoV spike (S) protein contains disulfide bonds and N-linked glycosylations, therefore, it is typically produced by secretion. Here, we describe a construct and protocol for the expression and purification of yellow fluorescent protein (YFP) labeled 2019-nCoV spike RBD. The fusion protein, in the vector pcDNA 4/TO, comprises an N-terminal interferon alpha 2 (IFNα2) signal peptide, an eYFP, a FLAG-tag, a human rhinovirus 3C protease (HRV3C) cleavage site, the RBD of the 2019-nCoV spike protein and a C-terminal 8x His-tag. We stably transfected HEK 293 cells. Following expansion of the cells, the fusion protein was secreted from adherent cells into serum-free medium. Ni-NTA immobilized metal ion affinity chromatography (IMAC) purification resulted in very high protein purity, based on analysis by SDS-PAGE. The fusion protein was soluble and monodisperse, as confirmed by size-exclusion chromatography (SEC) and negative staining electron microscopy. Deglycosylation experiments confirmed the presence of N-linked glycosylations in the secreted protein. Complex formation with the peptidase domain of human angiotensin-converting enzyme 2 (ACE2), the receptor for the 2019-nCoV spike RBD, was confirmed by SEC, both for the YFP-fused spike RBD and for spike RBD alone, after removal of YFP by proteolytic cleavage. Possible applications for the fusion protein include binding studies on cells or in vitro, fluorescent labeling of potential virus-binding sites on cells, the use as an antigen for immunization studies or as a tool for the development of novel virus- or antibody-detection assays.


Author(s):  
Akhileshwar Srivastava ◽  
Divya Singh

Presently, an emerging disease (COVID-19) has been spreading across the world due to coronavirus (SARS-CoV2). For treatment of SARS-CoV2 infection, currently hydroxychloroquine has been suggested by researchers, but it has not been found enough effective against this virus. The present study based on in silico approaches was designed to enhance the therapeutic activities of hydroxychloroquine by using curcumin as an adjunct drug against SARS-CoV2 receptor proteins: main-protease and S1 receptor binding domain (RBD). The webserver (ANCHOR) showed the higher protein stability for both receptors with disordered score (<0.5). The molecular docking analysis revealed that the binding energy (-24.58 kcal/mol) of hydroxychloroquine was higher than curcumin (-20.47 kcal/mol) for receptor main-protease, whereas binding energy of curcumin (<a>-38.84</a> kcal/mol) had greater than hydroxychloroquine<a> (-35.87</a> kcal/mol) in case of S1 receptor binding domain. Therefore, this study suggested that the curcumin could be used as combination therapy along with hydroxychloroquine for disrupting the stability of SARS-CoV2 receptor proteins


Author(s):  
Bipin Singh

: The recent outbreak of novel coronavirus (SARS-CoV-2 or 2019-nCoV) and its worldwide spread is posing one of the major threats to human health and the world economy. It has been suggested that SARS-CoV-2 is similar to SARSCoV based on the comparison of the genome sequence. Despite the genomic similarity between SARS-CoV-2 and SARSCoV, the spike glycoprotein and receptor binding domain in SARS-CoV-2 shows the considerable difference compared to SARS-CoV, due to the presence of several point mutations. The analysis of receptor binding domain (RBD) from recently published 3D structures of spike glycoprotein of SARS-CoV-2 (Yan, R., et al. (2020); Wrapp, D., et al. (2020); Walls, A. C., et al. (2020)) highlights the contribution of a few key point mutations in RBD of spike glycoprotein and molecular basis of its efficient binding with human angiotensin-converting enzyme 2 (ACE2).


In Vivo ◽  
2020 ◽  
Vol 34 (5) ◽  
pp. 3023-3026 ◽  
Author(s):  
STEVEN LEHRER ◽  
PETER H. RHEINSTEIN

Allergy ◽  
2021 ◽  
Author(s):  
Pia Gattinger ◽  
Katarzyna Niespodziana ◽  
Karin Stiasny ◽  
Sabina Sahanic ◽  
Inna Tulaeva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document