scholarly journals A limited innate immune response is induced by a replication-defective herpes simplex virus vector following delivery to the murine central nervous system

2009 ◽  
Vol 15 (5-6) ◽  
pp. 411-424 ◽  
Author(s):  
Zane Zeier ◽  
J Santiago Aguilar ◽  
Cecilia M Lopez ◽  
GB Devi-Rao ◽  
Zachary L Watson ◽  
...  
mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Daniel Giraldo ◽  
Douglas R. Wilcox ◽  
Richard Longnecker

ABSTRACT Newborns are particularly susceptible to severe forms of herpes simplex virus 1 (HSV-1) infection, including encephalitis and multisystemic disseminated disease. The underlying age-dependent differences in the immune response that explain this increased susceptibility relative to the adult population remain largely understudied. Using a murine model of HSV-1 infection, we found that newborn mice are largely susceptible to intracranial and intraperitoneal challenge while adult mice are highly resistant. This age-dependent difference correlated with differential basal-level expression of components of innate immune signaling pathways, which resulted in dampened interferon (IFN) signaling in the newborn brain. To explore the possibility of modulating the IFN response in the newborn brain to recapitulate the adult phenotype, we administered exogenous IFN-β in the context of disseminated HSV-1 infection. IFN-β treatment resulted in significantly increased survival and delayed viral neuroinvasion in the newborn. These effects were associated with changes in the type I IFN response in the brain, reduced viral replication in the periphery, and the stabilization of the blood-brain barrier (BBB). Our study reveals important age-dependent differences in the innate immune response to HSV-1 infection and suggests a contribution of the BBB and the brain parenchyma in mediating the increased susceptibility to HSV-1 infection observed in the newborn. These results could provide the basis for potential new therapeutic strategies for life-threatening HSV-1 infection in newborns. IMPORTANCE Herpes simplex virus (HSV) is a ubiquitous human pathogen affecting 50 to 80% of the population in North America and Europe. HSV infection is commonly asymptomatic in the adult population but can result in fatal encephalitis in the newborn. Current treatment with acyclovir has improved mortality in the newborn; however, severe neurologic sequelae are still a major concern following HSV encephalitis. For this reason, there is a critical need to better understand the underlying differences in the immune response between the two age groups that could be used to develop more effective treatments. In this study, we investigated differences in the innate immune response to viral infection in the brains of newborn and adult mice. We found that, similar to humans, newborn mice are more susceptible to HSV infection than the adult. Increased susceptibility was associated with dampened innate immune responses in the newborn brain that could be rescued by administering interferon beta.


2008 ◽  
Vol 83 (5) ◽  
pp. 2075-2087 ◽  
Author(s):  
Tracy Jo Pasieka ◽  
Cristian Cilloniz ◽  
Betty Lu ◽  
Thomas H. Teal ◽  
Sean C. Proll ◽  
...  

ABSTRACT Humans and mice lacking the interferon signaling molecule Stat1 are sensitive to a variety of pathogens due to their presumed inability to mount a strong innate immune response. The herpes simplex virus type 1 (HSV-1) virion host shutoff (vhs) protein is a multifunctional immunomodulator that counteracts the innate immune response and viruses lacking vhs are attenuated and effective live vaccines in animal models. To investigate the interplay of viruses with an immunocompromised host, we performed functional genomics analyses on control and Stat1−/− mouse corneas infected with wild-type or vhs-null viruses. In control mice, correlative with viral growth, both viruses induced a transient increase in immunomodulators, followed by viral clearance. In contrast, infection of the Stat1−/− mice induced a heightened and prolonged induction of inflammatory modulators for both viruses, manifesting as a significant immune cell infiltrate and ocular disease. Moreover, while wild-type virus infection of Stat1−/− was always lethal, vhs-null infection was rarely lethal. There was a significant increase in Stat3- and interleukin-6 (IL-6)-dependent transcription in Stat1−/− mice, implicating the Stat3 and IL-6 pathways in the observed ocular pathology. Further, infected Stat1−/− mice showed phosphorylated Stat3 in the corneal epithelium. Our data show a role for vhs in evading innate host responses and a role for Stat1 in limiting virus infection and for facilitating an appropriate nonpathological inflammatory response.


2019 ◽  
Vol 164 (5) ◽  
pp. 1433-1439 ◽  
Author(s):  
Yashvant D. Bansode ◽  
Debprasad Chattopadhyay ◽  
Bhaskar Saha

Sign in / Sign up

Export Citation Format

Share Document