Heme Oxygenase-1 in Lung Disease

2002 ◽  
pp. 148-163
2020 ◽  
Author(s):  
Alice S Chau ◽  
Bonnie L Cole ◽  
Jason S Debley ◽  
Kabita Nanda ◽  
Aaron BI Rosen ◽  
...  

Abstract Background: Heme oxygenase-1 (HMOX1) catalyzes the metabolism of heme into carbon monoxide, ferrous iron, and biliverdin. Through biliverdin reductase, biliverdin becomes bilirubin. HMOX1-deficiency is a rare autosomal recessive disorder with hallmark features of direct antibody negative hemolytic anemia with normal bilirubin, hyperinflammation and features similar to macrophage activation syndrome. Clinical findings have included asplenia, nephritis, hepatitis, and vasculitis. Pulmonary features and evaluation of the immune response have been limited.Case presentation: We present a young boy who presented with chronic respiratory failure due to nonspecific interstitial pneumonia following a chronic history of infection-triggered recurrent hyperinflammatory flares. Episodes included hemolysis without hyperbilirubinemia, immunodeficiency, hepatomegaly with mild transaminitis, asplenia, leukocytosis, thrombocytosis, joint pain and features of macrophage activation with negative autoimmune serologies. Lung biopsy revealed cholesterol granulomas. He was found post-mortem by whole exome sequencing to have a compound heterozygous paternal frame shift a paternal frame shift HMOX1 c.264delCTGG (p.L89Sfs*24) and maternal splice donor HMOX1 (c.636+2 T>A) consistent with HMOX1 deficiency. Western blot analysis confirmed lack of HMOX1 protein upon oxidant stimulation of the patient cells. Conclusions: Here, we describe a phenotype expansion for HMOX1-deficiency to include not only asplenia and hepatomegaly, but also interstitial lung disease with cholesterol granulomas and inflammatory flares with hemophagocytosis present in the bone marrow that can mimic systemic-onset juvenile arthritis.


2020 ◽  
Author(s):  
Alice S. Chau ◽  
Bonnie L. Cole ◽  
Jason S. Debley ◽  
Kabita Nanda ◽  
Aaron B.I. Rosen ◽  
...  

Abstract Background Heme oxygenase-1 (HMOX1) catalyzes the metabolism of heme into carbon monoxide, ferrous iron, and biliverdin. Through biliverdin reductase, biliverdin becomes bilirubin. HMOX1 -deficiency is an exceedingly rare autosomal recessive disorder with hallmark features of direct antibody negative hemolytic anemia with normal bilirubin, hyperinflammation and features indicating hemophagocytosis lymphohistiocytosis. Clinical findings have included asplenia, nephritis, hepatitis, and evidence of vasculitis. Pulmonary features and evaluation of the immune response have been limited. Results Here, we present the fifth reported case in literature of a young boy who remarkably also presented with chronic respiratory failure due to nonspecific interstitial pneumonia in addition to infection-triggered recurrent hyperinflammatory flares notable for hemolysis without hyperbilirubinemia, immunodeficiency, hepatomegaly with mild transaminitis, asplenia, leukocytosis, thrombocytosis, joint pain and features of macrophage activation with negative autoimmune serologies. Lung biopsy revealed cholesterol granulomas. He was found post-mortem by whole exome sequencing to have a compound heterozygous paternal frame shift a paternal frame shift HMOX1 c.264delCTGG (p.L89Sfs*24) and maternal splice donor HMOX1 (c.636+2 T>A) consistent with HMOX1 deficiency. Western blot analysis confirmed lack of HMOX1 protein upon oxidant stimulation of the patient cells. Conclusions Here, we describe a phenotype expansion for HMOX1-deficiency to include not only asplenia and hepatomegaly, but also interstitial lung disease with cholesterol granulomas and inflammatory flares with hemophagocytosis present in the bone marrow.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ryo Nagasawa ◽  
Yu Hara ◽  
Kota Murohashi ◽  
Ayako Aoki ◽  
Nobuaki Kobayashi ◽  
...  

Abstract Background Oxidative stress plays an important role in acute lung injury, which is associated with the development and progression of acute respiratory failure. Here, we investigated whether the degree of oxidative stress as indicated by serum heme oxygenase-1 (HO-1) is clinically useful for predicting prognosis among the patients with acute respiratory distress syndrome (ARDS) and acute exacerbation of interstitial lung disease (AE-ILD). Methods Serum HO-1 levels of newly diagnosed or untreated ARDS and AE-ILD patients were measured at diagnosis. Relationships between serum HO-1 and other clinical parameters and 1 and 3-month mortality were evaluated. Results Fifty-five patients including 22 of ARDS and 33 of AE-ILD were assessed. Serum HO-1 level at diagnosis was significantly higher in ARDS patients than AE-ILD patients (87.8 ± 60.0 ng/mL vs. 52.5 ± 36.3 ng/mL, P <  0.001). Serum HO-1 correlated with serum total bilirubin (R = 0.454, P <  0.001) and serum LDH (R = 0.500, P <  0.001). In both patients with ARDS and AE-ILDs, serum HO-1 level tended to decrease from diagnosis to 2 weeks after diagnosis, however, did not normalized. Composite parameters including serum HO-1, age, sex, and partial pressure of oxygen in arterial blood/fraction of inspired oxygen (P/F) ratio for prediction of 3-month mortality showed a higher AUC (ARDS: 0.925, AE-ILDs: 0.892) than did AUCs of a single predictor or combination of two or three predictors. Conclusion Oxidative stress assessed by serum HO-1 is persistently high among enrolled patients for 2 weeks after diagnosis. Also, serum HO-1 levels at the diagnosis combined with age, sex, and P/F ratio could be clinically useful for predicting 3-month mortality in both ARDS and AE-ILD patients.


2020 ◽  
Author(s):  
Ryo Nagasawa ◽  
Yu Hara ◽  
Kota Murohashi ◽  
Ayako Aoki ◽  
Nobuaki Kobayashi ◽  
...  

Abstract Background: Oxidative stress plays an important role in acute lung injury, which is associated with the development and progression of acute respiratory failure. Here, we investigated whether the degree of oxidative stress as indicated by serum heme oxygenase-1 (HO-1) is clinically useful for predicting prognosis among the patients with acute respiratory distress syndrome (ARDS) and acute exacerbation of interstitial lung disease (AE-ILDs).Methods: Serum HO-1 levels of newly diagnosed or untreated ARDS and AE-ILD patients were measured at diagnosis. Relationships between serum HO-1 and other clinical parameters and 1 and 3-month mortality were evaluated. Results: Fifty-five patients including 22 of ARDS and 33 of AE-ILD were assessed. Serum HO-1 level at diagnosis was significantly higher in ARDS patients than AE-ILD patients (87.8 ± 60.0 ng/mL vs. 52.5 ± 36.3 ng/mL, P < 0.001). Serum HO-1 correlated with serum total bilirubin (R = 0.454, P < 0.001) and serum LDH (R = 0.500, P < 0.001). In both patients with ARDS and AE-ILDs, serum HO-1 level tended to decrease from diagnosis to 2 weeks after diagnosis, however, did not normalized. Composite parameters including serum HO-1, age, sex, and partial pressure of oxygen in arterial blood/fraction of inspired oxygen (P/F) ratio for prediction of 3-month mortality showed a higher AUC (ARDS: 0.925, AE-ILDs: 0.892) than did AUCs of a single predictor or combination of two or three predictors. Conclusion: Oxidative stress assessed by serum HO-1 is persistently high among enrolled patients for 2 weeks after diagnosis. Also, serum HO-1 levels at the diagnosis combined with age, sex, and P/F ratio could be clinically useful for predicting 3-month mortality in both ARDS and AE-ILD patients.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Alice S. Chau ◽  
Bonnie L. Cole ◽  
Jason S. Debley ◽  
Kabita Nanda ◽  
Aaron B. I. Rosen ◽  
...  

Abstract Background Heme oxygenase-1 (HMOX1) catalyzes the metabolism of heme into carbon monoxide, ferrous iron, and biliverdin. Through biliverdin reductase, biliverdin becomes bilirubin. HMOX1-deficiency is a rare autosomal recessive disorder with hallmark features of direct antibody negative hemolytic anemia with normal bilirubin, hyperinflammation and features similar to macrophage activation syndrome. Clinical findings have included asplenia, nephritis, hepatitis, and vasculitis. Pulmonary features and evaluation of the immune response have been limited. Case presentation We present a young boy who presented with chronic respiratory failure due to nonspecific interstitial pneumonia following a chronic history of infection-triggered recurrent hyperinflammatory flares. Episodes included hemolysis without hyperbilirubinemia, immunodeficiency, hepatomegaly with mild transaminitis, asplenia, leukocytosis, thrombocytosis, joint pain and features of macrophage activation with negative autoimmune serologies. Lung biopsy revealed cholesterol granulomas. He was found post-mortem by whole exome sequencing to have a compound heterozygous paternal frame shift a paternal frame shift HMOX1 c.264_269delCTGG (p.L89Sfs*24) and maternal splice donor HMOX1 (c.636 + 2 T > A) consistent with HMOX1 deficiency. Western blot analysis confirmed lack of HMOX1 protein upon oxidant stimulation of the patient cells. Conclusions Here, we describe a phenotype expansion for HMOX1-deficiency to include not only asplenia and hepatomegaly, but also interstitial lung disease with cholesterol granulomas and inflammatory flares with hemophagocytosis present in the bone marrow.


2010 ◽  
Vol 11 (12) ◽  
pp. 1532-1540 ◽  
Author(s):  
Chintan M. Raval ◽  
Patty J. Lee

2012 ◽  
Vol 22 (5) ◽  
pp. 323-329 ◽  
Author(s):  
Meng-Ling Wu ◽  
Matthew D. Layne ◽  
Shaw-Fang Yet

Sign in / Sign up

Export Citation Format

Share Document