Proteomic Analysis in Drug Discovery

2016 ◽  
pp. 131-152
Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1056-1056
Author(s):  
Chenyue W Hu ◽  
Steven M. Kornblau ◽  
Alex Bisberg ◽  
Amina A Qutub

Abstract Introduction The heterogeneity of acute myeloid leukemia (AML) remains a great barrier to finding a cure for the disease. Despite our best efforts, the current classification system based on phenotypes and genetic mutations are insufficient to capture and characterize each AML subpopulation. This could result in a mismatch of drugs for a particular patient, an impediment to drug discovery, and an inadequate understanding of AML biology. A promising solution to this challenge is profiling patient samples using proteomics. However, researchers are restricted in their power to fully interpret this massive proteomic data due to a lack of standard AML-tailored computational procedures. In this study, we developed a cocktail of computational methods to analyze the AML proteomic data in conjunction with clinical data. This procedure, Standard Proteomic Analysis (SPA), is designed to help researchers identify unique patient groups, discover prognostic biomarkers, find drug targets and understand transitions between pathway activation states. We applied SPA to a set of AML proteomic data with a focus on hypoxia and angiogenesis to illustrate its utility. Methods The procedure of SPA is shown in Figure 1. We used Prototype Clustering to estimate the optimal number of patient clusters, and used k-means to obtain the cluster assignment for each patient. Standard Kaplan-Meier curve and log-rank tests were performed to examine how patient clustering impacts patient survival, whereas chi-square test was performed to evaluate the association between clinical correlates and the clustering. Principal Component Analysis was used to map the normal samples on top of the patient samples, in order to distinguish normal states from diseased states. To expand searches for drug targets beyond the key proteins, we built a protein network by combining the computationally derived connections from the data using glasso with the experimentally validated connections from public databases (e.g. String and KEGG). All of the results were visualized using an interactive platform Easel, where each patient could be tracked simultaneously across graphs. The example AML proteomic dataset was obtained by assaying 511 new AML patient samples using reverse phase protein array (RPPA). The RPPA was probed with 231 strictly validated antibodies, including antibodies against three hypoxia regulators (HIF1A, VHL, EGLN1) and two angiogenesis regulators (KDR, VASP). The normal bone marrow derived CD34+ cells were used for comparison. Results Using SPA, we first identified four patient clusters with distinct protein expression patterns (Figure 1A). Most patients displayed canonical hypoxic (C3) and non-hypoxic (C2) patterns, featuring high and low HIF1A with opposite expression of the others. The two non-canonical patterns (C1 & C4) indicate a decoupling between HIF1A and its known regulators (e.g., EGLN, VHL) and targets (e.g., KDR). C1 features high HIF1A, EGLN and VHL but low KDR and VASP. C4 is the opposite. The mapping of normal samples to patient samples (Figure 1B) suggested that non-canonical patterns might be disease specific. From the clinical correlates table (Figure 1D), we observed an association between canonical patterns and cell lineage differentiation, with C3 governing undifferentiated FAB M0/M1 cases and C2 dominant in monocytic M4/M5 subtypes. Furthermore, C1 was associated with favorable cytogenetics, but hypoxic patterns (C1 & C3) were adverse factors for overall survival among patients with intermediate cytogenetics (Figure 1C). The expanded protein networks (Figure 1E) revealed an umbrella of proteins in other pathways associated with each of the five proteins, including, e.g. a negative correlation between VASP and apoptosis proteins (BAD, BCL2, AIFM1), which has not been reported before. Conclusions We developed and applied an AML-tailored procedure, SPA, to analyze hypoxia and angiogenesis clinical proteomic data. Using SPA, we were able to identify four AML subpopulations with two disease specific patterns, discover the dependency between cell lineage development and canonical patterns, and explore potential drug targets beyond hypoxia and angiogenesis that are associated with each pattern. We believe SPA could be applied broadly and greatly expedite the drug discovery process in leukemia. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Yan Tan ◽  
Songsen Fu ◽  
Tao Yang ◽  
Yuxin Xie ◽  
Guyi Shen ◽  
...  

Photoaffinity probes combined with the chemical proteomic platform have emerged as versatile tools for ligand and target discovery. However, photoaffinity probes with retained activity cannot always label the known target, indicating that it is challenging to profile a ligand’s targets based on its photoaffinity probe modified at a single site. Herein, we construct a series of site-diversified probes (P1-P6) of 4-anilinoquinazoline, a scaffold shared by several marketed EGFR-targeted drugs, via attaching a “fully functionalized” diazirine tag to six different sites, respectively. Chemical proteomic analysis revealed that these probes show different proteome-wide profiles and distinct competition patterns by erlotinib. Remarkably, low activity P4 towards EGFR inhibition has better EGFR labelling efficiency than the higher one, P5, which highlights the dominance of labelling accessibility of diazirine over probe affinity. In addition, the integrated analysis of protein targets of site-diversified probes can also help distinguish false positive targets. We anticipate that site-diversification of the probes of a given scaffold is an indispensable strategy to truly harness the power of photoaffinity-based chemoproteomics in drug discovery.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 418
Author(s):  
Nobuhito Mori ◽  
Yasuyuki S. Kida

Artificial vascularized tubular liver tissue has perfusable blood vessels that allow fluid access to the tissue interior, enabling the injection of drugs and collection of metabolites, which are valuable for drug discovery. It is amenable to standard evaluation methods, such as paraffin-embedded sectioning, qPCR, and RNA sequencing, which makes it easy to implement into existing research processes. However, the application of tissues vascularized by the self-assembly of cells, (including tubular liver tissue, has not yet been tested in comprehensive proteomic analysis relevant for drug discovery. Here, we established a method to efficiently separate cells from the tubular liver tissue by adding a pipetting step during collagenase treatment. By using this method, we succeeded in obtaining a sufficient number of cells for the proteomic analysis. In addition, to validate this approach, we compared the cells separated from the tissue with those grown in 2D culture, focusing on the proteins related to drug metabolism. We found that the levels of proteins involved in metabolic phases II and III were slightly higher in the tubular liver tissue than those in the 2D cell culture. Taken together, our suggested method demonstrates the applicability of tubular liver tissue to the proteomic analysis in drug assays.


2021 ◽  
Author(s):  
Yan Tan ◽  
Songsen Fu ◽  
Tao Yang ◽  
Yuxin Xie ◽  
Guyi Shen ◽  
...  

Photoaffinity probes combined with the chemical proteomic platform have emerged as versatile tools for ligand and target discovery. However, photoaffinity probes with retained activity cannot always label the known target, indicating that it is challenging to profile a ligand’s targets based on its photoaffinity probe modified at a single site. Herein, we construct a series of site-diversified probes (P1-P6) of 4-anilinoquinazoline, a scaffold shared by several marketed EGFR-targeted drugs, via attaching a “fully functionalized” diazirine tag to six different sites, respectively. Chemical proteomic analysis revealed that these probes show different proteome-wide profiles and distinct competition patterns by erlotinib. Remarkably, low activity P4 towards EGFR inhibition has better EGFR labelling efficiency than the higher one, P5, which highlights the dominance of labelling accessibility of diazirine over probe affinity. In addition, the integrated analysis of protein targets of site-diversified probes can also help distinguish false positive targets. We anticipate that site-diversification of the probes of a given scaffold is an indispensable strategy to truly harness the power of photoaffinity-based chemoproteomics in drug discovery.


2007 ◽  
Vol 177 (4S) ◽  
pp. 297-297
Author(s):  
Kristina Schwamborn ◽  
Rene Krieg ◽  
Ruth Knüchel-Clarke ◽  
Joachim Grosse ◽  
Gerhard Jakse

Sign in / Sign up

Export Citation Format

Share Document