scholarly journals Evaluation of Site-Diversified, Fully Functionalized Diazirine Probes for Chemical Proteomic Applications

Author(s):  
Yan Tan ◽  
Songsen Fu ◽  
Tao Yang ◽  
Yuxin Xie ◽  
Guyi Shen ◽  
...  

Photoaffinity probes combined with the chemical proteomic platform have emerged as versatile tools for ligand and target discovery. However, photoaffinity probes with retained activity cannot always label the known target, indicating that it is challenging to profile a ligand’s targets based on its photoaffinity probe modified at a single site. Herein, we construct a series of site-diversified probes (P1-P6) of 4-anilinoquinazoline, a scaffold shared by several marketed EGFR-targeted drugs, via attaching a “fully functionalized” diazirine tag to six different sites, respectively. Chemical proteomic analysis revealed that these probes show different proteome-wide profiles and distinct competition patterns by erlotinib. Remarkably, low activity P4 towards EGFR inhibition has better EGFR labelling efficiency than the higher one, P5, which highlights the dominance of labelling accessibility of diazirine over probe affinity. In addition, the integrated analysis of protein targets of site-diversified probes can also help distinguish false positive targets. We anticipate that site-diversification of the probes of a given scaffold is an indispensable strategy to truly harness the power of photoaffinity-based chemoproteomics in drug discovery.

2021 ◽  
Author(s):  
Yan Tan ◽  
Songsen Fu ◽  
Tao Yang ◽  
Yuxin Xie ◽  
Guyi Shen ◽  
...  

Photoaffinity probes combined with the chemical proteomic platform have emerged as versatile tools for ligand and target discovery. However, photoaffinity probes with retained activity cannot always label the known target, indicating that it is challenging to profile a ligand’s targets based on its photoaffinity probe modified at a single site. Herein, we construct a series of site-diversified probes (P1-P6) of 4-anilinoquinazoline, a scaffold shared by several marketed EGFR-targeted drugs, via attaching a “fully functionalized” diazirine tag to six different sites, respectively. Chemical proteomic analysis revealed that these probes show different proteome-wide profiles and distinct competition patterns by erlotinib. Remarkably, low activity P4 towards EGFR inhibition has better EGFR labelling efficiency than the higher one, P5, which highlights the dominance of labelling accessibility of diazirine over probe affinity. In addition, the integrated analysis of protein targets of site-diversified probes can also help distinguish false positive targets. We anticipate that site-diversification of the probes of a given scaffold is an indispensable strategy to truly harness the power of photoaffinity-based chemoproteomics in drug discovery.


2020 ◽  
Vol 130 ◽  
pp. 110565
Author(s):  
Baoying Wang ◽  
Shuaifei Lu ◽  
Changjing Zhang ◽  
Leilei Zhu ◽  
Yucheng Li ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1056-1056
Author(s):  
Chenyue W Hu ◽  
Steven M. Kornblau ◽  
Alex Bisberg ◽  
Amina A Qutub

Abstract Introduction The heterogeneity of acute myeloid leukemia (AML) remains a great barrier to finding a cure for the disease. Despite our best efforts, the current classification system based on phenotypes and genetic mutations are insufficient to capture and characterize each AML subpopulation. This could result in a mismatch of drugs for a particular patient, an impediment to drug discovery, and an inadequate understanding of AML biology. A promising solution to this challenge is profiling patient samples using proteomics. However, researchers are restricted in their power to fully interpret this massive proteomic data due to a lack of standard AML-tailored computational procedures. In this study, we developed a cocktail of computational methods to analyze the AML proteomic data in conjunction with clinical data. This procedure, Standard Proteomic Analysis (SPA), is designed to help researchers identify unique patient groups, discover prognostic biomarkers, find drug targets and understand transitions between pathway activation states. We applied SPA to a set of AML proteomic data with a focus on hypoxia and angiogenesis to illustrate its utility. Methods The procedure of SPA is shown in Figure 1. We used Prototype Clustering to estimate the optimal number of patient clusters, and used k-means to obtain the cluster assignment for each patient. Standard Kaplan-Meier curve and log-rank tests were performed to examine how patient clustering impacts patient survival, whereas chi-square test was performed to evaluate the association between clinical correlates and the clustering. Principal Component Analysis was used to map the normal samples on top of the patient samples, in order to distinguish normal states from diseased states. To expand searches for drug targets beyond the key proteins, we built a protein network by combining the computationally derived connections from the data using glasso with the experimentally validated connections from public databases (e.g. String and KEGG). All of the results were visualized using an interactive platform Easel, where each patient could be tracked simultaneously across graphs. The example AML proteomic dataset was obtained by assaying 511 new AML patient samples using reverse phase protein array (RPPA). The RPPA was probed with 231 strictly validated antibodies, including antibodies against three hypoxia regulators (HIF1A, VHL, EGLN1) and two angiogenesis regulators (KDR, VASP). The normal bone marrow derived CD34+ cells were used for comparison. Results Using SPA, we first identified four patient clusters with distinct protein expression patterns (Figure 1A). Most patients displayed canonical hypoxic (C3) and non-hypoxic (C2) patterns, featuring high and low HIF1A with opposite expression of the others. The two non-canonical patterns (C1 & C4) indicate a decoupling between HIF1A and its known regulators (e.g., EGLN, VHL) and targets (e.g., KDR). C1 features high HIF1A, EGLN and VHL but low KDR and VASP. C4 is the opposite. The mapping of normal samples to patient samples (Figure 1B) suggested that non-canonical patterns might be disease specific. From the clinical correlates table (Figure 1D), we observed an association between canonical patterns and cell lineage differentiation, with C3 governing undifferentiated FAB M0/M1 cases and C2 dominant in monocytic M4/M5 subtypes. Furthermore, C1 was associated with favorable cytogenetics, but hypoxic patterns (C1 & C3) were adverse factors for overall survival among patients with intermediate cytogenetics (Figure 1C). The expanded protein networks (Figure 1E) revealed an umbrella of proteins in other pathways associated with each of the five proteins, including, e.g. a negative correlation between VASP and apoptosis proteins (BAD, BCL2, AIFM1), which has not been reported before. Conclusions We developed and applied an AML-tailored procedure, SPA, to analyze hypoxia and angiogenesis clinical proteomic data. Using SPA, we were able to identify four AML subpopulations with two disease specific patterns, discover the dependency between cell lineage development and canonical patterns, and explore potential drug targets beyond hypoxia and angiogenesis that are associated with each pattern. We believe SPA could be applied broadly and greatly expedite the drug discovery process in leukemia. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Giang Nguyen ◽  
Jack Bennett ◽  
Sherrie Liu ◽  
Sarah Hancock ◽  
Daniel Winter ◽  
...  

The structural diversity of natural products offers unique opportunities for drug discovery, but challenges associated with their isolation and screening can hinder the identification of drug-like molecules from complex natural product extracts. Here we introduce a mass spectrometry-based approach that integrates untargeted metabolomics with multistage, high-resolution native mass spectrometry to rapidly identify natural products that bind to therapeutically relevant protein targets. By directly screening crude natural product extracts containing thousands of drug-like small molecules using a single, rapid measurement, novel natural product ligands of human drug targets could be identified without fractionation. This method should significantly increase the efficiency of target-based natural product drug discovery workflows.


2018 ◽  
Author(s):  
Jeffrey R. Wagner ◽  
Christopher P. Churas ◽  
Shuai Liu ◽  
Robert V. Swift ◽  
Michael Chiu ◽  
...  

1SummaryDocking calculations can be used to accelerate drug discovery by providing predictions of the poses of candidate ligands bound to a targeted protein. However, studies in the literature use varied docking methods, and it is not clear which work best, either in general or for specific protein targets. In addition, a complete docking calculation requires components beyond the docking algorithm itself, such as preparation of the protein and ligand for calculations, and it is difficult to isolate which aspects of a method are most in need of improvement. To address such issues, we have developed the Continuous Evaluation of Ligand Protein Predictions (CELPP), a weekly blinded challenge for automated docking workflows. Participants in CELPP create a workflow to predict protein-ligand binding poses, which is then tasked with predicting 10-100 new (never before released) protein-ligand crystal structures each week. CELPP evaluates the accuracy of each workflow’s predictions and posts the scores online. CELPP is a new cyberinfrastructure resource to identify the strengths and weaknesses of current approaches, help map docking problems to the algorithms most likely to overcome them, and illuminate areas of unmet need in structure-guided drug design.


2021 ◽  
Author(s):  
Tim Häbe ◽  
Christian Späth ◽  
Steffen Schrade ◽  
Wolfgang Jörg ◽  
Roderich Süssmuth ◽  
...  

Rationale: Low speed and flexibility of most LC-MS/MS approaches in early drug discovery delays sample analysis from routine in vivo studies within the same day of measurements. A highthroughput platform for the rapid quantification of drug compounds in various in vivo assays was developed and established in routine bioanalysis. Methods: Automated selection of an efficient and adequate LC method was realized by autonomous sample qualification for ultrafast batch gradients (9 s/sample) or for fast linear gradients (45 s/sample) if samples require chromatography. The hardware and software components of our Rapid and Integrated Analysis System (RIAS) were streamlined for increased analytical throughput via state-of-the-art automation while keeping high analytical quality. Results: Online decision-making was based on a quick assay suitability test (AST) based on a small and dedicated sample set evaluated by two different strategies. 84% of the acquired data points were within ±30% accuracy and 93% of the deviations between the lower limit of quantitation (LLOQ) values were ≤2-fold compared to standard LC-MS/MS systems while speed, flexibility and overall automation was significantly improved. Conclusions: The developed platform provided an analysis time of only 10 min (batch-mode) and 50 min (gradient-mode) per standard pharmacokinetic (PK) study (62 injections). Automation, data evaluation and results handling were optimized to pave the way for machine learning based decision-making regarding the evaluation strategy of the AST


Sign in / Sign up

Export Citation Format

Share Document