Computer Models for Predicting Drug Absorption

2016 ◽  
pp. 354-371
1997 ◽  
Vol 36 (04/05) ◽  
pp. 237-240
Author(s):  
P. Hammer ◽  
D. Litvack ◽  
J. P. Saul

Abstract:A computer model of cardiovascular control has been developed based on the response characteristics of cardiovascular control components derived from experiments in animals and humans. Results from the model were compared to those obtained experimentally in humans, and the similarities and differences were used to identify both the strengths and inadequacies of the concepts used to form the model. Findings were confirmatory of some concepts but contrary to some which are firmly held in the literature, indicating that understanding the complexity of cardiovascular control probably requires a combination of experiments and computer models which integrate multiple systems and allow for determination of sufficiency and necessity.


2020 ◽  
Vol 29 (4) ◽  
pp. 741-757
Author(s):  
Kateryna Hazdiuk ◽  
◽  
Volodymyr Zhikharevich ◽  
Serhiy Ostapov ◽  
◽  
...  

This paper deals with the issue of model construction of the self-regeneration and self-replication processes using movable cellular automata (MCAs). The rules of cellular automaton (CA) interactions are found according to the concept of equilibrium neighborhood. The method is implemented by establishing these rules between different types of cellular automata (CAs). Several models for two- and three-dimensional cases are described, which depict both stable and unstable structures. As a result, computer models imitating such natural phenomena as self-replication and self-regeneration are obtained and graphically presented.


2020 ◽  
Vol 16 (3) ◽  
pp. 194-200
Author(s):  
Shai Luria

Computer modeling of the wrist has followed other fields in the search for descriptive methods to understand the biomechanics of injury. Using patient-specific 3D computer models, we may better understand the biomechanics of wrist fractures in order to plan better care. We may better estimate fracture morphology and stability and evaluate surgical indications, design more adequate or effective surgical approaches and develop novel methods of therapy. The purpose of this review is to question the actual advances made in the understanding of wrist fractures using computer models.


2020 ◽  
Vol 15 ◽  
Author(s):  
Diksha Sharma ◽  
Deepak Sharma

Background: Gliclazide (GLZ) belongs to the second-generation of sulphonylureas, is a drug of choice for the management of type II DM. It belongs to BCS Class II. The major site of drug absorption for GLZ is the stomach; it displayed variation in the drug absorption rate and bioavailability due to the shorter gastric retention time. Floating mechanism performance gets affected when the gastric fluid level not sufficiently higher, which ultimately obstructs the floating behavior, which is the major limitation of reported formulations. This limitation can get over by folded the film into the capsule shell that dissolved in gastric fluid and film swell/expands to dimensions higher than pylorus sphincter (12mm), thus prevents its evacuation. Objective: To explore the floating mechanism in the designing of films along with a tendency to expand by swelling and unfolding by utilizing a mixture of hydrophilic and hydrophobic polymer to achieve the controlled drug delivery and prolonged gastric retention of drug. Methods: The gastroretentive floating films were formulated by the solvent casting technique using 32 full factorial design and subjected to in vitro evaluation parameters, drug-excipient compatibility, X-ray diffraction and accelerated stability study. Results: The pre-formulation study established the purity and identification of drug. FTIR study confirmed no drug excipient interaction. F3, F6, and F9 were optimized based on in vitro floating characteristics, swelling/expanding ability, and unfolding time study. All developed formulations were unfolded within 14-22 min after capsule disintegration. The F3 was selected as final formulation as its ability to control the release of drug for 24 hrs followed by Zero-order kinetics having super case 2 transport. XRD confirmed the amorphousness of drug within formulation. The stability study results revealed that formulation was quite stable at extreme storage condition. Conclusion: The developed novel formulation has a good potential for the effective management and treatment of Diabetes Mellitus.


1993 ◽  
Vol 3 (3) ◽  
pp. 273-279
Author(s):  
Alan N. Beard
Keyword(s):  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 272
Author(s):  
Arik Dahan ◽  
Isabel González-Álvarez

The gastrointestinal tract (GIT) can be broadly divided into several regions: the stomach, the small intestine (which is subdivided to duodenum, jejunum, and ileum), and the colon. The conditions and environment in each of these segments, and even within the segment, are dependent on many factors, e.g., the surrounding pH, fluid composition, transporters expression, metabolic enzymes activity, tight junction resistance, different morphology along the GIT, variable intestinal mucosal cell differentiation, changes in drug concentration (in cases of carrier-mediated transport), thickness and types of mucus, and resident microflora. Each of these variables, alone or in combination with others, can fundamentally alter the solubility/dissolution, the intestinal permeability, and the overall absorption of various drugs. This is the underlying mechanistic basis of regional-dependent intestinal drug absorption, which has led to many attempts to deliver drugs to specific regions throughout the GIT, aiming to optimize drug absorption, bioavailability, pharmacokinetics, and/or pharmacodynamics. In this Editorial we provide an overview of the Special Issue "Regional Intestinal Drug Absorption: Biopharmaceutics and Drug Formulation". The objective of this Special Issue is to highlight the current progress and to provide an overview of the latest developments in the field of regional-dependent intestinal drug absorption and delivery, as well as pointing out the unmet needs of the field.


Sign in / Sign up

Export Citation Format

Share Document