Novel Swellable/Expandable Gastroretentive Floating Films of Gliclazide Folded in Capsule Shell for the Effective Management of Diabetes Mellitus: Formulation Development, Optimization and In vitro Evaluation

2020 ◽  
Vol 15 ◽  
Author(s):  
Diksha Sharma ◽  
Deepak Sharma

Background: Gliclazide (GLZ) belongs to the second-generation of sulphonylureas, is a drug of choice for the management of type II DM. It belongs to BCS Class II. The major site of drug absorption for GLZ is the stomach; it displayed variation in the drug absorption rate and bioavailability due to the shorter gastric retention time. Floating mechanism performance gets affected when the gastric fluid level not sufficiently higher, which ultimately obstructs the floating behavior, which is the major limitation of reported formulations. This limitation can get over by folded the film into the capsule shell that dissolved in gastric fluid and film swell/expands to dimensions higher than pylorus sphincter (12mm), thus prevents its evacuation. Objective: To explore the floating mechanism in the designing of films along with a tendency to expand by swelling and unfolding by utilizing a mixture of hydrophilic and hydrophobic polymer to achieve the controlled drug delivery and prolonged gastric retention of drug. Methods: The gastroretentive floating films were formulated by the solvent casting technique using 32 full factorial design and subjected to in vitro evaluation parameters, drug-excipient compatibility, X-ray diffraction and accelerated stability study. Results: The pre-formulation study established the purity and identification of drug. FTIR study confirmed no drug excipient interaction. F3, F6, and F9 were optimized based on in vitro floating characteristics, swelling/expanding ability, and unfolding time study. All developed formulations were unfolded within 14-22 min after capsule disintegration. The F3 was selected as final formulation as its ability to control the release of drug for 24 hrs followed by Zero-order kinetics having super case 2 transport. XRD confirmed the amorphousness of drug within formulation. The stability study results revealed that formulation was quite stable at extreme storage condition. Conclusion: The developed novel formulation has a good potential for the effective management and treatment of Diabetes Mellitus.

2017 ◽  
Vol 52 (11) ◽  
pp. 752-760 ◽  
Author(s):  
Kristin Reindel ◽  
Fang Zhao ◽  
Susan Hughes ◽  
Vivek S. Dave

Purpose: The feasibility of preparing an eslicarbazepine acetate suspension using Aptiom tablets for administration via enteral feeding tubes was evaluated. Methods: Eslicarbazepine acetate suspension (40 mg/mL) was prepared using Aptiom tablets after optimizing the tablet crushing methods and the vehicle composition. A stability-indicating high-performance liquid chromatography (HPLC) method was developed to monitor the eslicarbazepine stability in the prepared suspension. Three enteric feeding tubes of various composition and dimensions were evaluated for the delivery of the suspensions. The suspension was evaluated for the physical and chemical stability for 48 hours. Results: The reproducibility and consistency of particle size reduction was found to be best with standard mortar/pestle. The viscosity analysis and physical stability studies showed that ORA-Plus:water (50:50 v/v) was optimal for suspending ability and flowability of suspension through the tubes. The developed HPLC method was found to be stability indicating and suitable for the assay of eslicarbazepine acetate in the prepared suspension. The eslicarbazepine concentrations in separately prepared suspensions were within acceptable range (±3%), indicating accuracy and reproducibility of the procedure. The eslicarbazepine concentrations in suspensions before and after delivery through the enteric feeding tubes were within acceptable range (±4%), indicating absence of any physical/chemical interactions of eslicarbazepine with the tubes and a successful delivery of eslicarbazepine dosage via enteric feeding tubes. The stability study results showed that eslicarbazepine concentration in the suspension remained unchanged when stored at room temperature for 48 hours. Conclusion: The study presents a convenient procedure for the preparation of a stable suspension of eslicarbazepine acetate (40 mg/mL) using Aptiom tablets, for administration via enteral feeding tubes.


Author(s):  
Farghana Begam ◽  
Rajalakshmi A. N ◽  
Padmapriya S

The study was aimed to formulate and evaluate Thyroid hormone (T3) immediate release tablets of a model Reference Listed Drug (RLD). The objective was to develop a cost effective immediate release tablet formulation and to optimize the formula in product development same that of the reference product. The ingredients used were API (thyroid hormone), lactose monohydrate (diluent), acacia (binder), maize starch (disintegrant), sodium chloride (alkalinizing agent) and magnesium stearate (lubricant). The concentration of maize starch and magnesium stearate were altered to reach the objective. Totally five formulations (F1 - F5) were prepared by direct compression method. The plan of work involved involved in the study was1 Selection of drug and excipients, 2Physico–chemical characterization and drug identification, 3Preformulation parameters of the drug, 4Pre–compression parameters for the tablet blend, 5Formulation and development of the tablet dosage form, 6Post compression parameters of the tablet and 7Stability study. The stability studies were performed as per ICH guidelines. Among all the formulations F5 was found to be the best as it showed better results than the other formulations. In vitro disintegration time and percentage drug release results shown satisfactory results. Stability study results showed no significant changes in the formulation. Keywords: Thyroid hormone (T3), Immediate release tablets, Direct compression, Dissolution.


2011 ◽  
Vol 414 (1-2) ◽  
pp. 77-85 ◽  
Author(s):  
Shuanghui Luo ◽  
Zhiying Wang ◽  
Mitesh Patel ◽  
Varun Khurana ◽  
Xiaodong Zhu ◽  
...  

2006 ◽  
Vol 21 (3) ◽  
pp. 183-189 ◽  
Author(s):  
M. Manfredi ◽  
M. J. McCullough ◽  
Z. M. Al-Karaawi ◽  
P. Vescovi ◽  
S. R. Porter

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Amruta Balekundri ◽  
Amit Shahapuri ◽  
Mrityunjaya Patil

Abstract Background Traditional medicine being ethnic is preferred worldwide even in these modern days. Obesity is a lifestyle disorder. Many chemically synthesized medicines are available. Poly-herbal medicines can be one of the safest alternatives with less side effects in treating obese patients. Results The in vitro anti-lipase activity was carried out for a different concentration. The formulation of the poly-herbal tablets was designed using the Design Expert software. The pre-compression and post-compression studies show that the formulation F6 showed better results of all the formulations designed. Stability study results showed that the poly-herbal tablets were stable throughout the studies. Conclusion The results show that F6 is the better formulation based on the tablet evaluation, and all the extracts showed inhibitory activity against pancreatic lipase indicating its active role in the treatment of obesity.


2019 ◽  
Vol 10 (3) ◽  
pp. 213-223 ◽  
Author(s):  
S. J. Owonubi ◽  
E. Mukwevho ◽  
B. A. Aderibigbe ◽  
Neerish Revaprasadu ◽  
E. R. Sadiku

INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (12) ◽  
pp. 34-40
Author(s):  
V.V Pande ◽  
◽  
A.A. Patel ◽  
V.P. Patel ◽  
P.V. Khedkar

The mouth dissolving film overcomes the shortfalls of conventional quick dispersing/dissolving intraoral tablets. Fosinopril is an angiotensin converting enzyme (ACE) inhibitor used for the treatment of hypertension and some types of chronic heart failure.It undergoes extensive hepatic first pass metabolism, with bioavailability being only 36%. In the present investigation, an attempt was made to formulate fast dissolving film of fosinopril sodium by Solvent casting method using various film forming polymers such as HPMC 5cps, HPMC E-3, HPMC E-15 each being varied at three different concentration(6%,8%,10%). Drug-excipient compatibility studies were carried out by FTIR spectroscopy and DSC. in order to establish compatibility between drug and excipients The results revealed that the drug and excipients were satisfactorily compatible, without any significant changes in the chemical nature of the drug. Prepared films were subjected to different evaluation parameters such as folding endurance, physical appearance, %moisture absorption,drug content uniformity, in vitro disintegration time, in vitro dissolution studies and stability studies. All the formulations show name accurred compliance with pharmacopoeial standards. The stability study shows that no significant changes in films after one month study. Results revealed that the formulations F1 containing 6% HPMC 5cps showed better release property, low disintegration time, good folding endurance and good physical appearance compared to other formulations, so it was selected as the best formulation.


2019 ◽  
Vol 200 (1) ◽  
pp. 208-216 ◽  
Author(s):  
Xinyu Mao ◽  
Yuan Tian ◽  
Rui Sun ◽  
Qiang Wang ◽  
Juan Huang ◽  
...  

Author(s):  
SANDEEP KUMAR REDDY ADENA ◽  
KASI VISWANADH MATTE ◽  
RAMOJI KOSURU

Objective: The present research aims to design, develop, optimize, characterize and evaluate dasatinib (DSB) loaded polymeric nanocarriers to treat chronic myeloid leukaemia (CML) by adopting a quality by design (QbD) approach. Methods: Risk assessment was performed by using failure modes and effects analysis, and optimization of nanoformulation was done by adopting 23 full factorial design. The optimized nanoformulation was characterized by different characterization techniques and evaluated by various in vitro studies. Results: Surface morphology and shape were found to be smooth and spherical. Stability study results revealed that the nanoformulation could be stored in all three storage conditions for safe and long-term use since it retained its pharmaceutical properties. Drug release was 32.06 % in the first 4 h and 79.34 % by the end of 48 h which infers a sustained-release pattern. The hemocompatibility results showed no sign of hemolysis. Cellular uptake study showed approximately 10 to 20-fold much higher intracellular fluorescence intensities of nanoformulation than DSB. Cytotoxicity results confirmed that when compared to the pure drug, the optimized nanoformulation have a potential cytotoxic effect in the treatment of CML since it exhibited a significantly more % growth inhibition. Cell apoptosis assay revealed that the nanoformulation could provide significant antileukaemia activity against K562 cells and further induce K562 cell death with a dose and time-dependent manner. Conclusion: The results of the characterization and evaluation studies showed that the developed nanoformulation offered significant advantages, making it a potential delivery system of DSB for more effective treatment of CML.


Sign in / Sign up

Export Citation Format

Share Document