scholarly journals PERFORMANCE COMPARISON OF ANFIS, ANN, SVR, CART AND MLR TECHNIQUES FOR GEOMETRY OPTIMIZATION OF CARBON NANOTUBES USING CASTEP

Author(s):  
Çiğdem ACI ◽  
Mehmet ACI ◽  
Mutlu AVCI
Author(s):  
Habibah Mohamed ◽  
Ninik Irawati ◽  
Fauzan Ahmad ◽  
Mohd Haniff Ibrahim ◽  
Sumiaty Ambran ◽  
...  

<p>We demonstrated performance comparison of optical humidity sensor for bare and Multi-walled carbon nanotubes (MWCNTs) slurry coated tapered optical fiber. The starting material for MWCNTs slurry is MWCNTs- acrylonitrile butadiene styrene (ABS) based fused deposition modeling (FDM) 3D printer filament. The ABS was dissolved using acetone to produce MWCNTs-acetone suspension. The MWCNTs-acetone suspension was drop-casted on the tapered fiber to produce MWCNTs slurry by evaporation process at room temperature, which resulted the MWCNTs slurry attach to the tapered fiber. The MWCNTs slurry acts as the cladding for humidity changes measurement. The experimental works showed improvement of sensitivity from 3.811 μW/% of bare tapered fiber to 5.17 μW/% for the coated tapered fiber with MWCNTs slurry when the humidity varied from 45% to 80%.</p>


2021 ◽  
Vol 8 (3) ◽  
pp. 25-40
Author(s):  
Amin D. Thamira Thamira ◽  
Ali S.Hasan Hasan ◽  
Raheem G. Kadhim Kadhim ◽  
Watheq G. Bakheet Bakheet ◽  
Hamid I. Abbood Abbood

One of the most important uses of carbon nanotubes (CNTs) as a nanosensor for variouspolluted gases resulting from the burning of petroleum derivatives containing sulfur compoundsor extracted from the gases associated with petroleum, which are isolated by heat.In this investigation, we tested the adhesion of gas molecules connected with oil: we examinedthe adhesion of gas molecules connected with oil: sulfur dioxide (SO2) and hydrogen sulphide(H2S) on the surface of ((5,0) zigzag and length (100 nm)) CNTs using DFT calculations toexplore the high sensitivity to nanosensor for these molecules, which have gotten awesomeconsideration because of environmental and industrial considerations.From the results obtained in this study geometry optimization (structural properties) fornanosensor for useful assention with trial information. While the electronic properties includedcalculate total energy, HOMO energies, LUMO energies, ionization potential, electron affinity,potential electronic chemical, electronegativity, electrochemical hardness and electronic softness,also, the energy gap of the sensors under study has been calculated and the energy gap varies asstated by the type of gases to be detected. Moreover, we used orbital analysis counting the DOSto finding out the possible orbital hybridization between molecules and CNTs. From theseresults, we can say that the CNTs under study ((5,0) zigzag and the length (100 nm)) has a highsusceptibility to being an effective nanosensor for the gas molecules connected with the oil. Thistype of sensor(CNTs/SO2 or H2S) is standout amongst those a large portion essentialpersonalprotective equipment that is to warn the person of the presence of gases associated with oil,especially in areas of normal gas extraction.


Author(s):  
Utkarsh Chadha ◽  
Preetam Bhardwaj ◽  
Sanjeevikumar Padmanaban ◽  
Dikshita Kabra ◽  
Garima Pareek ◽  
...  

Abstract Magnesium-sulfur batteries have developed as a new and emerging technology benefiting from high energy density, low cost, reasonable safety, and excellent energy storage due to the high natural abundance of electrochemically active materials and low dendrite formation in magnesium. Here we report various enhancement strategies and also focus on using carbon electrodes, coating layers of carbon over the cathodes, carbon nanotubes, reduced graphene oxide, graphene-carbon nanotubes in magnesium-sulfur batteries because of its high conductivity and improved overall electrochemical functioning of the magnesium-sulfur battery. However, developing these batteries remains challenging due to significant problems caused during theirs operation, such as self-discharge, Mg-anode passivation, insufficient reversible capacity, low sulfur cathode utilization, and rapid capacity loss. We acknowledge the synthesis of non-nucleophilic electrolytes, both situ characterizations of anode or electrode reactions and kinetics, strategic development of sulfur-based cathodes and carbon electrode in Mg-S battery as a critical factor toward improvement in cycle performance, specific capacity, overpotential and working voltage, and confinement of Mg-PS polysulfide, to limit the shuttling of polysulphides, steady accumulation and desolvation of magnesium divalent ions to create a magnesium-conducting surface electrode interphase(SEI). We also present a detailed description of the Mg-S battery, its challenges, future research directions for the practical implementation of the various developed electrolyte and electrodes


Author(s):  
Jun Jiao

HREM studies of the carbonaceous material deposited on the cathode of a Huffman-Krätschmer arc reactor have shown a rich variety of multiple-walled nano-clusters of different shapes and forms. The preparation of the samples, as well as the variety of cluster shapes, including triangular, rhombohedral and pentagonal projections, are described elsewhere.The close registry imposed on the nanotubes, focuses attention on the cluster growth mechanism. The strict parallelism in the graphitic separation of the tube walls is maintained through changes of form and size, often leading to 180° turns, and accommodating neighboring clusters and defects. Iijima et. al. have proposed a growth scheme in terms of pentagonal and heptagonal defects and their combinations in a hexagonal graphitic matrix, the first bending the surface inward, and the second outward. We report here HREM observations that support Iijima’s suggestions, and add some new features that refine the interpretation of the growth mechanism. The structural elements of our observations are briefly summarized in the following four micrographs, taken in a Hitachi H-8100 TEM operating at an accelerating voltage of 200 kV and with a point-to-point resolution of 0.20 nm.


Sign in / Sign up

Export Citation Format

Share Document