scholarly journals MODELING AND SIMULATION OF DYNAMIC MECHANICAL SYSTEMS USING ELECTRIC CIRCUIT ANALOGY

Author(s):  
Mehmet AKBABA
Author(s):  
S. J. Lee ◽  
B. J. Gilmore ◽  
M. M. Ogot

Abstract Uncertainties due to random dimensional tolerances within stochastic dynamic mechanical systems lead to mechanical errors and thus, performance degradation. Since design standards do not exist for these systems, analysis and design tools are needed to properly allocate tolerances. This paper presents probabilistic models and methods to allocate tolerances on the link lengths and radial clearances such that the system meets a probabilistic and time dependent performance criterion. The method includes a general procedure for sensitivity analysis, using the effective link length model and nominal equations of motion. Since the sensitivity analysis requires only the nominal equations of motion and statistical information as input, it is straight forward to implement. An optimal design problem is formulated to allocate random tolerances. Examples are presented to illustrate the approach and its generality. This paper provides a solution to the tolerance allocation problem for stochastic dynamically driven mechanical systems.


Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 772
Author(s):  
Dongkyun Shin ◽  
Jinyoung Lee ◽  
Jongwoon Park

With an attempt to achieve high-density fine organic stripes for potential applications in solution-processable organic light-emitting diodes (OLEDs), we have performed slot-die coatings using a shim with slit channels in various shapes (rectangular-shaped narrow, rectangular-shaped wide, and reversely tapered channels) in the presence of narrow µ-tips. Based on hydraulic-electric circuit analogy, we have analyzed the fluid dynamics of an aqueous poly (3,4-ethylenedioxythiophene): poly (4-styrenesulfonate) (PEDOT:PSS). It is observed that the coating speed can be increased and the stripe width can be reduced using a shim with rectangular-shaped wide slit channels. It is attributed that the hydraulic resistance is decreased and thus more fluid can reach a substrate through µ-tips. This behavior is consistent with the simulation result of the equivalent electrical circuit with a DC voltage source representing a pressure source. Using the shim with 150-µm-wide slit channels, we have successfully fabricated 200 PEDOT:PSS stripes within the effective coating width (150 mm) and 160 OLED stripes (34 stripes per inch) with the luminance of 325 cd/m2 at 5 V.


2018 ◽  
Vol 11 (52) ◽  
pp. 2563-2570
Author(s):  
Jorge Duarte ◽  
Guillermo E. Valencia ◽  
Luis G. Obregon

1993 ◽  
Vol 115 (3) ◽  
pp. 392-402 ◽  
Author(s):  
S. J. Lee ◽  
B. J. Gilmore ◽  
M. M. Ogot

Uncertainties due to random dimensional tolerances within stochastic dynamic mechanical systems lead to mechanical errors and thus, performance degradation. Since design standards do not exist for these systems, analysis and design tools are needed to properly allocate tolerances. This paper presents probabilistic models and methods to allocate tolerances on the link lengths and radial clearances such that the system meets a probabilistic and time dependent performance criterion. The method includes a general procedure for sensitivity analysis, using the effective link length model and nominal equations of motion. Since the sensitivity analysis requires only the nominal equations of motion and statistical information as input, it is straight forward to implement. An optimal design problem is formulated to allocate random tolerances. Examples are presented to illustrate the approach and its generality. This paper provides a solution to the tolerance allocation problem for stochastic dynamically driven mechanical systems.


Sign in / Sign up

Export Citation Format

Share Document