scholarly journals Citizen science project reveals novel fusarioid fungi (Nectriaceae, Sordariomycetes) from urban soils

Author(s):  
P.W. Crous ◽  
M. Hernández-Restrepo ◽  
A.L. van Iperen ◽  
M. Starink-Willemse ◽  
M. Sandoval-Denis ◽  
...  

Soil fungi play a crucial role in soil quality and fertility in being able to break down organic matter but are frequently also observed to play a role as important plant pathogens. As part of a Citizen Science Project initiated by the Westerdijk Fungal Biodiversity Institute and the Utrecht University Museum, which aimed to describe novel fungal species from Dutch garden soil, the diversity of fusarioid fungi (Fusarium and other fusarioid genera), which are members of Nectriaceae (Hypocreales) was investigated. Preliminary analyses of ITS and LSU sequences from more than 4 750 isolates obtained indicated that 109 strains belong to this generic complex. Based on multi-locus phylogenies of combinations of cmdA, tef1, rpb1, rpb2 and tub2 alignments, and morphological characteristics, 25 species were identified, namely 22 in Fusarium and three in Neocosmospora. Furthermore, two species were described as new namely F. vanleeuwenii from the Fusarium oxysporum species complex (FOSC), and F. wereldwijsianum from the Fusarium incarnatum-equiseti species complex (FIESC). Other species encountered in this study include in the FOSC: F. curvatum, F. nirenbergiae, F. oxysporum and three undescribed Fusarium spp.; in the FIESC: F. clavus, F. croceum, F. equiseti, F. flagelliforme and F. toxicum; Fusarium tricinctum species complex: F. flocciferum and F. torulosum; the Fusarium sambucinum species complex: F. culmorum and F. graminearum; the Fusarium redolens species complex: F. redolens; and the Fusarium fujikuroi species complex: F. verticillioides. Three species of Neocosmospora were encountered, namely N. solani, N. stercicola and N. tonkinensis. Although soil fungal diversity has been well studied in the Netherlands, this study revealed two new species, and eight new records: F. clavus, F. croceum, F. flagelliforme, F. odoratissimum, F. tardicrescens, F. toxicum, F. triseptatum and N. stercicola.

MycoKeys ◽  
2020 ◽  
Vol 65 ◽  
pp. 49-99 ◽  
Author(s):  
Lingwei Hou ◽  
Margarita Hernández-Restrepo ◽  
Johannes Zacharias Groenewald ◽  
Lei Cai ◽  
Pedro W. Crous

Fungal communities play a crucial role in maintaining the health of managed and natural soil environments, which directly or indirectly affect the properties of plants and other soil inhabitants. As part of a Citizen Science Project initiated by the Westerdijk Fungal Biodiversity Institute and the Utrecht University Museum, which aimed to describe novel fungal species from Dutch garden soil, the diversity of Didymellaceae, which is one of the largest families in the Dothideomycetes was investigated. A preliminary analysis of the ITS and LSU sequences from the obtained isolates allowed the identification of 148 strains belonging to the family. Based on a multi-locus phylogeny of a combined ITS, LSU, rpb2 and tub2 alignment, and morphological characteristics, 20 different species were identified in nine genera, namely Ascochyta, Calophoma, Didymella, Juxtiphoma, Nothophoma, Paraboeremia, Phomatodes, Stagonosporopsis, and Xenodidymella. Several isolates confirmed to be ubiquitous plant pathogens or endophytes were for the first time identified from soil, such as Ascochyta syringae, Calophoma clematidis-rectae, and Paraboeremia litseae. Furthermore, one new genus and 12 novel species were described from soil: Ascochyta benningiorumsp. nov., Didymella degraaffiaesp. nov., D. kooimaniorumsp. nov., Juxtiphoma kolkmaniorumsp. nov., Nothophoma brennandiaesp. nov., Paraboeremia rekkerisp. nov., P. truiniorumsp. nov., Stagonosporopsis stuijvenbergiisp. nov., S. weymaniaesp. nov., Vandijckomycella joseaegen. nov. et sp. nov., V. snoekiaesp. nov., and Xenodidymella weymaniaesp. nov. From the results of this study, soil was revealed to be a rich substrate for members of Didymellaceae, several of which were previously known only from diseased or apparently healthy plant hosts.


2019 ◽  
Vol 18 (9) ◽  
pp. 1135-1154 ◽  
Author(s):  
Alejandra Giraldo ◽  
Margarita Hernández-Restrepo ◽  
Pedro W. Crous

Abstract During 2017, the Westerdijk Fungal Biodiversity Institute (WI) and the Utrecht University Museum launched a Citizen Science project. Dutch school children collected soil samples from gardens at different localities in the Netherlands, and submitted them to the WI where they were analysed in order to find new fungal species. Around 3000 fungal isolates, including filamentous fungi and yeasts, were cultured, preserved and submitted for DNA sequencing. Through analysis of the ITS and LSU sequences from the obtained isolates, several plectosphaerellaceous fungi were identified for further study. Based on morphological characters and the combined analysis of the ITS and TEF1-α sequences, some isolates were found to represent new species in the genera Phialoparvum, i.e. Ph. maaspleinense and Ph. rietveltiae, and Plectosphaerella, i.e. Pl. hanneae and Pl. verschoorii, which are described and illustrated here.


Diversity ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 309
Author(s):  
Rhian A. Salmon ◽  
Samuel Rammell ◽  
Myfanwy T. Emeny ◽  
Stephen Hartley

In this paper, we focus on different roles in citizen science projects, and their respective relationships. We propose a tripartite model that recognises not only citizens and scientists, but also an important third role, which we call the ‘enabler’. In doing so, we acknowledge that additional expertise and skillsets are often present in citizen science projects, but are frequently overlooked in associated literature. We interrogate this model by applying it to three case studies and explore how the success and sustainability of a citizen science project requires all roles to be acknowledged and interacting appropriately. In this era of ‘wicked problems’, the nature of science and science communication has become more complex. In order to address critical emerging issues, a greater number of stakeholders are engaging in multi-party partnerships and research is becoming increasingly interdisciplinary. Within this context, explicitly acknowledging the role and motivations of everyone involved can provide a framework for enhanced project transparency, delivery, evaluation and impact. By adapting our understanding of citizen science to better recognise the complexity of the organisational systems within which they operate, we propose an opportunity to strengthen the collaborative delivery of both valuable scientific research and public engagement.


Author(s):  
Fernanda Beatriz Jordan Rojas Dallaqua ◽  
Fabio Augusto Faria ◽  
Alvaro Luiz Fazenda

2018 ◽  
Vol 48 (4) ◽  
pp. 564-588 ◽  
Author(s):  
Dick Kasperowski ◽  
Thomas Hillman

In the past decade, some areas of science have begun turning to masses of online volunteers through open calls for generating and classifying very large sets of data. The purpose of this study is to investigate the epistemic culture of a large-scale online citizen science project, the Galaxy Zoo, that turns to volunteers for the classification of images of galaxies. For this task, we chose to apply the concepts of programs and antiprograms to examine the ‘essential tensions’ that arise in relation to the mobilizing values of a citizen science project and the epistemic subjects and cultures that are enacted by its volunteers. Our premise is that these tensions reveal central features of the epistemic subjects and distributed cognition of epistemic cultures in these large-scale citizen science projects.


Author(s):  
José Luís Araújo ◽  
Carla Morais ◽  
João Paiva

The active participation of citizens in scientific research, through citizen science, has been proven successful. However, knowledge on the potential of citizen science within formal chemistry learning, at the conceptual...


2019 ◽  
pp. 186-190
Author(s):  
Nicholas Mee

Frank Drake devised the Drake equation to estimate the number of advanced civilizations in the galaxy with the aim of gathering support for SETI (the Search for Extraterrestrial Intelligence). The earliest attempts to detect radio signals from extraterrestrials date back to the 1960s. Paul Allen has funded the Allen Telescope, Array which is dedicated to searching for such signals. When complete it will include 350 radio dishes. The citizen science project SETI@Home allows anyone with a home PC to participate in analysing the data amassed by the SETI project.


2018 ◽  
Vol 52 (4) ◽  
pp. 7-18
Author(s):  
Robert J. Weaver ◽  
Kelli Hunsucker ◽  
Holly Sweat ◽  
Kody Lieberman ◽  
Abby Meyers ◽  
...  

AbstractBenthic filter feeding organisms have the potential to improve local water quality by filtering microalgae and particulate matter out of the water column. A pilot project was conducted to test the concept of creating a Living Dock by growing these filter feeders at a dock in the Indian River Lagoon. Two different methods (mats and bags) were tested for their ability to recruit benthic organisms, as well as the efficacy of these methods for use as a long-term citizen science project. Eighteen oyster mats were wrapped around dock pilings, and 18 oyster bags were suspended between pilings of the same dock. After 1 year of immersion, healthy populations of barnacles, sponges, algae, bryozoans, mussels, and tunicates were found growing on both the bags and the mats. During that same time period, live oysters were also found growing on both mats and bags, with a maximum of 73 live oysters in one bag. Although the total percent cover of organisms settling on the shells did not differ between the mats or the bags, there was significantly greater organismal diversity in the bag treatment compared to the mat treatment. Bags were a more effective recruiter of benthic organisms, but longevity was an issue, with bags becoming heavily fouled and often breaking loose from the dock over time. It was noted that the mats with the higher shell densities saw greater recruitment and had greater diversity. Although the bags proved to be a better alternative than mats for the recruitment and growth of benthic organisms, they are not sustainable for use as a citizen science project. Future efforts should consider constructing mats with high-density shell counts, as the mats have more durability and are better suited for citizen scientists.


Sign in / Sign up

Export Citation Format

Share Document