scholarly journals The impact of near domain transfer on biomedical named entity recognition

Author(s):  
Nigel Collier ◽  
Mai-vu Tran ◽  
Ferdinand Paster
2021 ◽  
Vol 2 (4) ◽  
pp. 1-24
Author(s):  
Pratyay Banerjee ◽  
Kuntal Kumar Pal ◽  
Murthy Devarakonda ◽  
Chitta Baral

In this work, we formulated the named entity recognition (NER) task as a multi-answer knowledge guided question-answer task (KGQA) and showed that the knowledge guidance helps to achieve state-of-the-art results for 11 of 18 biomedical NER datasets. We prepended five different knowledge contexts—entity types, questions, definitions, and examples—to the input text and trained and tested BERT-based neural models on such input sequences from a combined dataset of the 18 different datasets. This novel formulation of the task (a) improved named entity recognition and illustrated the impact of different knowledge contexts, (b) reduced system confusion by limiting prediction to a single entity-class for each input token (i.e., B , I , O only) compared to multiple entity-classes in traditional NER (i.e., B entity 1, B entity 2, I entity 1, I , O ), (c) made detection of nested entities easier, and (d) enabled the models to jointly learn NER-specific features from a large number of datasets. We performed extensive experiments of this KGQA formulation on the biomedical datasets, and through the experiments, we showed when knowledge improved named entity recognition. We analyzed the effect of the task formulation, the impact of the different knowledge contexts, the multi-task aspect of the generic format, and the generalization ability of KGQA. We also probed the model to better understand the key contributors for these improvements.


2021 ◽  
pp. 1-10
Author(s):  
Zhucong Li ◽  
Zhen Gan ◽  
Baoli Zhang ◽  
Yubo Chen ◽  
Jing Wan ◽  
...  

Abstract This paper describes our approach for the Chinese Medical named entity recognition(MER) task organized by the 2020 China conference on knowledge graph and semantic computing(CCKS) competition. In this task, we need to identify the entity boundary and category labels of six entities from Chinese electronic medical record(EMR). We construct a hybrid system composed of a semi-supervised noisy label learning model based on adversarial training and a rule postprocessing module. The core idea of the hybrid system is to reduce the impact of data noise by optimizing the model results. Besides, we use post-processing rules to correct three cases of redundant labeling, missing labeling, and wrong labeling in the model prediction results. Our method proposed in this paper achieved strict criteria of 0.9156 and relax criteria of 0.9660 on the final test set, ranking first.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kanix Wang ◽  
Robert Stevens ◽  
Halima Alachram ◽  
Yu Li ◽  
Larisa Soldatova ◽  
...  

AbstractMachine reading (MR) is essential for unlocking valuable knowledge contained in millions of existing biomedical documents. Over the last two decades1,2, the most dramatic advances in MR have followed in the wake of critical corpus development3. Large, well-annotated corpora have been associated with punctuated advances in MR methodology and automated knowledge extraction systems in the same way that ImageNet4 was fundamental for developing machine vision techniques. This study contributes six components to an advanced, named entity analysis tool for biomedicine: (a) a new, Named Entity Recognition Ontology (NERO) developed specifically for describing textual entities in biomedical texts, which accounts for diverse levels of ambiguity, bridging the scientific sublanguages of molecular biology, genetics, biochemistry, and medicine; (b) detailed guidelines for human experts annotating hundreds of named entity classes; (c) pictographs for all named entities, to simplify the burden of annotation for curators; (d) an original, annotated corpus comprising 35,865 sentences, which encapsulate 190,679 named entities and 43,438 events connecting two or more entities; (e) validated, off-the-shelf, named entity recognition (NER) automated extraction, and; (f) embedding models that demonstrate the promise of biomedical associations embedded within this corpus.


2020 ◽  
Author(s):  
Usman Naseem ◽  
Matloob Khushi ◽  
Vinay Reddy ◽  
Sakthivel Rajendran ◽  
Imran Razzak ◽  
...  

Abstract Background: In recent years, with the growing amount of biomedical documents, coupled with advancement in natural language processing algorithms, the research on biomedical named entity recognition (BioNER) has increased exponentially. However, BioNER research is challenging as NER in the biomedical domain are: (i) often restricted due to limited amount of training data, (ii) an entity can refer to multiple types and concepts depending on its context and, (iii) heavy reliance on acronyms that are sub-domain specific. Existing BioNER approaches often neglect these issues and directly adopt the state-of-the-art (SOTA) models trained in general corpora which often yields unsatisfactory results. Results: We propose biomedical ALBERT (A Lite Bidirectional Encoder Representations from Transformers for Biomedical Text Mining) - bioALBERT - an effective domain-specific pre-trained language model trained on huge biomedical corpus designed to capture biomedical context-dependent NER. We adopted self-supervised loss function used in ALBERT that targets on modelling inter-sentence coherence to better learn context-dependent representations and incorporated parameter reduction strategies to minimise memory usage and enhance the training time in BioNER. In our experiments, BioALBERT outperformed comparative SOTA BioNER models on eight biomedical NER benchmark datasets with four different entity types. The performance is increased for; (i) disease type corpora by 7.47% (NCBI-disease) and 10.63% (BC5CDR-disease); (ii) drug-chem type corpora by 4.61% (BC5CDR-Chem) and 3.89 (BC4CHEMD); (iii) gene-protein type corpora by 12.25% (BC2GM) and 6.42% (JNLPBA); and (iv) Species type corpora by 6.19% (LINNAEUS) and 23.71% (Species-800) is observed which leads to a state-of-the-art results. Conclusions: The performance of proposed model on four different biomedical entity types shows that our model is robust and generalizable in recognizing biomedical entities in text. We trained four different variants of BioALBERT models which are available for the research community to be used in future research.


Sign in / Sign up

Export Citation Format

Share Document