scholarly journals Calculation of CO adsorption capacity of single iron(II)- porphyrin and related electron transfer behavior by DFT theory

2020 ◽  
Author(s):  
Placido G. Mineo

The effect of CO adsorption on the electron transport behavior of single iron(II)-porphyrin molecular wire with sulfur end groups bonded to two gold electrodes isinvestigated using nonequilibrium Green's function formalism combined with firstprinciples density functional theory. The current-voltage characteristics of the singleFe-porphyrin molecular wires with and without CO adsorption are calculated. Theresults demonstrate that Fe-porphyrin molecular wire shows a negative differentialresistance (NDR) at 2.0 V

2018 ◽  
Vol 32 (04) ◽  
pp. 1850036 ◽  
Author(s):  
Aiyun Yang ◽  
Caijuan Xia ◽  
Boqun Zhang ◽  
Jun Wang ◽  
Yaoheng Su ◽  
...  

By applying first-principles method based on density functional theory combined with nonequilibrium Green’s function, we investigate the effect of torsion angle on the electronic transport properties in dipyrimidinyl–diphenyl co-oligomer molecular device with tailoring graphene nanoribbon electrodes. The results show that the torsion angle plays an important role on the electronic transport properties of the molecular device. When the torsion angle rotates from 0[Formula: see text] to 90[Formula: see text], the molecular devices exhibit very different current–voltage characteristics which can realize the on and off states of the molecular switch.


2017 ◽  
Vol 19 (32) ◽  
pp. 21461-21466 ◽  
Author(s):  
Sahar Izadi Vishkayi ◽  
Meysam Bagheri Tagani

Motivated by recent experimental and theoretical research on a monolayer of boron atoms, borophene, the current–voltage characteristics of three different borophene sheets, 2Pmmn, 8Pmmn, and 8Pmmm, are calculated using density functional theory combined with the nonequilibrium Green’s function formalism.


2020 ◽  
Vol 11 ◽  
pp. 1036-1044
Author(s):  
Babak Sakkaki ◽  
Hassan Rasooli Saghai ◽  
Ghafar Darvish ◽  
Mehdi Khatir

Recent experiments suggest graphene-based materials as candidates in future electronic and optoelectronic devices. In this paper, we propose to investigate new photodetectors based on graphene nanomeshes (GNMs). Density functional theory (DFT) calculations are performed to gain insight into electronic and optical characteristics of various GNM structures. To investigate the device-level properties of GNMs, their current–voltage characteristics are explored by DFT-based tight-binding (DFTB) in combination with non-equilibrium Green’s function (NEGF) methods. Band structure analysis shows that GNMs have both metallic and semiconducting properties depending on the arrangements of perforations. Also, absorption spectrum analysis indicates attractive infrared peaks for GNMs with semiconducting characteristics, making them better photodetectors than graphene nanoribbon (GNR)-based alternatives. The results suggest that GNMs can be potentially used in mid-infrared detectors with specific detectivity values that are 100-fold that of graphene-based devices and 1000-fold that of GNR-based devices. Hence, the special properties of graphene combined with the quantum feathers of the perforation makes it suitable for optical devices.


2015 ◽  
Vol 29 (20) ◽  
pp. 1550106 ◽  
Author(s):  
Xiaojiao Zhang ◽  
Keqiu Chen ◽  
Mengqiu Long ◽  
Jun He ◽  
Yongli Gao

The electronic transport properties of molecular devices constructed by conjugated molecular wire tetrathiafulvalene (TTF) have been studied by applying nonequilibrium Green’s functions in combination with the density-functional theory. Two molecular junctions with different wire lengths have been considered. The results show that the current–voltage curves of TTF devices can be modulated by the length of the molecular wire and negative differential resistance behaviors are observed in these systems. The mechanisms have been proposed for the length effect and negative differential resistance behavior.


2021 ◽  
Vol 2140 (1) ◽  
pp. 012025
Author(s):  
D Sergeyev ◽  
A Duisenova ◽  
Zh Embergenov

Abstract In this work, within the framework of density functional theory combined with the method of nonequilibrium Green’s functions the density of states, transmission spectrum, current-voltage characteristics, and differential conductivity of Li-intercalated graphene (LiC6) have been determined. It is shown that in the energy range of -1.3÷-1.05 eV the quasiparticle transport through the nanostructure is disable. The features of IV- and dI/dV-characteristics of LiC6 in the form of decreasing of resistance in the range of -0.4÷0.4 V were revealed, and in the interval of 0.4÷1.4 V formation of negative differential resistance area, related to scattering of quasiparticles. It is established, that LiC6 nanodevice has 12÷13 ballistic channels and has the maximum amount of conductance 12÷13G0 , where Go is the conductance quantum.


2012 ◽  
Vol 45 (2) ◽  
pp. 025102 ◽  
Author(s):  
Zhi Yang ◽  
Xuguang Liu ◽  
Shaoding Liu ◽  
Yongzhen Yang ◽  
Xiuyan Li ◽  
...  

2018 ◽  
Vol 32 (29) ◽  
pp. 1850323
Author(s):  
Ting Ting Zhang ◽  
Cai Juan Xia ◽  
Bo Qun Zhang ◽  
Xiao Feng Lu ◽  
Yang Liu ◽  
...  

The electronic transport properties of oligo p-phenylenevinylene (OPV) molecule sandwiched with symmetrical or asymmetric tailoring graphene nanoribbons (GNRs) electrodes are investigated by nonequilibrium Green’s function in combination with density functional theory. The results show that different tailored GNRs electrodes can modulate the current–voltage characteristic of molecular devices. The rectifying behavior can be observed with respect to electrodes, and the maximum rectification ratio can reach to 14.2 in the asymmetric AC–ZZ GNRs and ZZ–AC–ZZ GNRs electrodes system. In addition, the obvious negative differential resistance can be observed in the symmetrical AC-ZZ GNRs system.


2018 ◽  
Vol 20 (39) ◽  
pp. 25246-25255 ◽  
Author(s):  
Yurong He ◽  
Peng Zhao ◽  
Jinjia Liu ◽  
Wenping Guo ◽  
Yong Yang ◽  
...  

To understand the chemical origin of platinum promotion effects on iron based Fischer–Tropsch synthesis catalysts, the effects of Pt on CO adsorption and dissociation as well as surface carbon hydrogenation on the Fe5C2(100) facet with different surface C* contents have been studied using the spin-polarized density functional theory method.


Sign in / Sign up

Export Citation Format

Share Document